

PLANNING SOLAR NEIGHBORHOODS: STRATEGIES, TOOLS, AND PERSPECTIVES

SEPTEMBER 6 - 22, 2022 FALL SCHOOL

IEA SHC Task 63 Solar Neighborhood Planning

Organized by Caroline Hachem-Vermette, PhD Subtask A Leader

Edited by Caroline Hachem-Vermette, PhD Maria Wall, PhD Karly Do

The Fall School is organized by Dr. Hachem-Vermette, Subtask A leader, as part of STA deliverables.

University of Calgary School of Architecture, Planning, and Landscape

The main objective of the Fall School (September 2022) is to introduce and discuss various solar strategies, and methods employed to assess and evaluate these solar strategies and concepts, from various perspectives and standpoints. Presentations and discussions will be carried to enhance the comprehension of various perspectives that should be considered in selecting solar strategies, passive and active, for neighborhood application. These perspectives can encompass life cycle analysis, solar technologies integration, techno-economic aspects, simulations and multi-objective solutions, impact on energy goals and sustainable developments, in addition • to other practical, social and technical aspects.

The Fall School includes theoretical/lecture-based parts. where prominent people in various fields of solar energy applications (including simulations) are invited to talk about aspects of solar energy, and role of solar energy technologies in sustainable buildings and neighborhoods.

Selected topics of presentations and discussions encompass:

- Status of solar technologies deployment and 100% renewables
- Life cycle of solar technologies and impact
- Socio/economic aspects
- PV and STC integration in buildings •
- Simulations of neighborhoods, to analyze different solar strategies
- Overview of various strategies and applications
- Technologies and sustainable developments case study from industry perspective.

Overview of IEA SHC Task 63 - Planning Solar Neighborhoods Maria Wall	
The Significant Role of Solar Energy to Mitigate Climate Change David Renne	
Positive Energy Districts Francesco Guarino	
Environmental Performances and Sustainability Assessment in the Building Sector Maurizio Cellura	
Electrification of the Built Environment: Designing Future Buildings and Communities	122
Economics of Solar Neighborhoods and Evaluation Techniques Kuljeet Grewal	
Economics of Neighborhood Solar Development Eric Wilczynski	
The Role of Occupant Behaviour in Energy Efficient Buildings and Solar Neighborhoods Planning Mohamed Ouf	
Designing and Building Effective Sustainable Neighorhoods: A Case Study of the EVE Park London Project Seungyeon Hong and Ashley Hammerbacher	
The Impact of Urban Morphology and Construction Standards on the Energy Consumption of Neighborhoods	

Ursula Eicker

Dr. Maria Wall

Dr. Maria Wall is associate professor at the since interdisciplinary teamwork is needed Division of Energy and Building Design, Lund University, Sweden. Energy aspects related to buildings have always fascinated her. She has a MSc in Architecture and a PhD in Engineering. Her research includes different aspects related to energy-efficient buildings as well as solar energy strategies. She is presently leader of the international research project IEA SHC Task 63 on Solar Neighborhood Planning (2019-2023), including both passive and active solar energy strategies. She was leader of the SHC Task 41 on Solar Energy and Architecture (2009-2012), and then leader for the SHC Task 51 on Solar Energy in Urban Planning (2013-2018).

She was the main initiator and developer, and was the Director of the 2-year Master's Programme in Energy-efficient and Environmental Building Design at Lund University, during 2012-2022. This programme is enrolling international different students from backgrounds, both in architecture and in engineering,

when designing sustainable buildings and neighbourhoods.

Dr. Caroline Hachem-Vermette

An architect by training and by profession, Dr. Caroline Hachem-Vermette has two master's degrees in architecture, and an additional master's, and PhD degrees in Building Engineering from Concordia University. Dr. Hachem-Vermette research program is highly multidisciplinary, involving such diverse disciplines as architecture, urban planning, and building engineering.

Her research area includes the investigations of multifunctional energy-efficient, resilient neighborhood patterns, solar potential and energy implications of building shapes, building envelope design, developing multifunctional facades for multistory buildings, and others. Her research is multidisciplinary, it plays a bridging role between building engineering and architectural and urban design. Her current research program aims at developing concepts and strategies for the design of sustainable and climate resilient, self-sufficient, smart communities and urban developments. A part of this research program concentrates on the design of urban green infrastructure that aims at improving the health and wellbeing of urban inhabitants, especially in times of stresses (including pandemics).

She is currently leading a subtask on developing strategies for net-zero energy solar communities, within the International Agency Energy Task (IEA) 63 - Planning Solar Neighborhoods. She was also an expert on 2 other IEA SHC tasks on solar energy in architecture and urban planning. She is widely published on the topic of energy efficiency and solar energy, including a book (with Springer) on designing solar buildings and neighborhoods. Dr. Hachem-Vermette is a recipient of a number of awards including the 2019 Peak Scholar Award, 2016 sustainability award, e-sim/ IBPSA award for innovation in modelling, and Hangai prize for young researchers.

Dr. David Renne

Dr. Renné has worked on renewable energy R&D programs for over 45 years. After graduating from Colorado State University (Fort Collins, Colorado, USA) with a Masters in Atmospheric Sciences and a PhD in Earth Resources in 1975 he launched his career at the Pacific Northwest National Laboratory (Richland, Washington USA) where he worked primarily on wind resource assessment programs, both in the U.S. and internationally. In 1991 he moved to the U.S. National Renewable Energy Laboratory (Golden, Colorado USA) to manage NREL's solar resource assessment activities and to work on several international renewable energy programs. After retiring from NREL in 2012 he formed his consultancy, Dave Renné Renewables.

He is currently a Senior Consultant to Clean Power Research, and has consulted with the World Bank, the International Renewable Energy Agency (IRENA), the Asian Development Bank, and several private-sector organizations.

From 2010 – 2019 he served as President of the International Solar Energy Society and continues to serve on their Executive Committee. He also represents on the Board of the Global Solar Council. In 2019 and 2020 he served as co-Chair of the International Renewable Energy Agency's Coalition for Action "Towards 100% Renewable Energy" Group and remains heavily involved with this working group. For over 18 years he was an Associate Editor of the Solar Energy Journal in the topical area of Solar Resource and Energy Meteorology.

Dr. Francesco Guarino

Francesco Guarino is Assistant Professor at towards sustainability in the building and the University of Palermo, department of Engineering. He completed his M.Sc in Energy engineering in 2011 and got his Ph.D. in Energy in 2015, working on "Building integrated phase change materials energy storage: experimental studies, modelling and parametric analysis". He participated to multiple International Energy Agency workgroups since 2012 from both the "Solar Heating and Cooling" and "Energy in Buildings and communities" programmes, notably IEA SHC Task 40/ECBCS Annex 52 "Towards net zero energy solar buildings" and is currently Operating agent of Annex 83 "Positive Energy Districts".

Author of more than 100 among papers in national and international journals and conferences, book chapters or technical reports, he is reviewer consulted among several international energy and environmental journals. Recipient of several research awards and best paper awards. His work is oriented

energy sector, through research in the fields of Life Cycle Assessment of buildings and energy technologies, building physics and building simulation, low-carbon and renewable energy technologies.

Dr. Maurizio Cellura

Full professor of Building Physics and Building Energy Systems since 2011 at the University of Palermo, his scientific activity is mainly oriented towards energy and environmental topics, with focus on energy efficiency in buildings, technologies powered by renewable energy technologies and decarbonization strategies of systems and processes. Director of the Centre for Sustainability and Ecological transition of the University of Palermo since March 2022. Representative for the University of Palermo to the "Sustainable Solutions Development Network - a global initiative for the United Nations" since 2014, he was national vice president of the "Italian Life Cycle Assessment Network" since 2012, becoming president in October 2015.

He is member of the Italian consultation board of the Italian Ministry for Education for the challenge "Secure, Cleaner and Efficient Energy" of the EU program Horizon 2020 (from October 2013). He is national representative

of the SETPLAN IWG 5 "Energy Efficiency in Buildings". He is Italian representative member of the Bureau of Research and Innovation of the Union for Mediterranean. He authored more than 380 scientific publications.

Dr. Steven Strong

Steven studied engineering at Northeastern University and then went on to study architecture at the Boston Architectural Center where he established their 1st curriculum on sustainable design. He has taught courses in renewable energy systems engineering and design studios in 'Net-Zero' / sustainable building design and has lectured on these subjects at Arizona State University, Harvard's GSD, University of Oregon, Georgia Tech, Worcester Polytechnic Institute, Pace University, New Jersey Institute of Technology, Rhode Island School of Design, Carnegie Mellon University, Savannah College of Art and Design, Simon Fraser University, MIT, the New School of Architecture, Swiss Federal Institute of Technology, University of Massachusetts, University of California, Southern California Institute of Architecture. Oxford. Tufts University, York University, Roger Williams University, University of Aachen, Yale, Olin College of Engineering, Princeton, Murdoch University, and the Frank Lloyd Wright School of Architecture. He is a Fellow of the American Solar Energy Society.

He is the author of The Solar Electric House and Solar Electric Buildings, an Overview of Today's Applications; contributing author of Photovoltaics in the Built Environment, a Design Guide for Architects and Engineers as well as contributing author to Photovoltaics in Buildings, Building with Photovoltaics and, Green Design – From Theory to Practice with noted architect Ken Yeang. Articles about him and his work have appeared in some 100 publications including TIME, Architecture, Architectural Record, Environmental Design and Construction, World Architecture, Popular Science, IEEE Spectrum, Wired, Forbes, New Age, Sun and Wind Energy (Germany), Fortune and Business Week" as well as radio and television interviews and energy and environmental documentaries.

Steven has received numerous awards and citations for his work. In 1993, he received the 1st 'Inherit the Earth' award from Connecticut College for his pioneering work in sustainable design. In 1999, he was named an 'Environmental Hero for the Planet' by TIME magazine. He's the recipient of the Northeast Sustainable Energy Association's Professional Leadership award and the Charles Greeley Abbot Award from the American Solar Energy Society. In 2007 TIME magazine again recognized him as "An innovator building a greener world" in their special issue on responding to Climate Change. The Massachusetts Institute of Technology recently recognized the 1st all-solar, Net-Zero-Energy residence he designed in the late 1970s in their chronicle of the major technological innovations achieved over the last 150 years.

Dr. Costa Kapsis

Costa's research lies at the interface between science, engineering, and architectural design with an emphasis on energy in buildings and communities. His research is focused on questions of energy efficiency, solar energy generation and energy transaction in the built environment. These research efforts aim towards the evolution of (i) building envelope technologies, (ii) climate-resilient cities and communities, and (iii) energy integration between the building and transportation sectors.

Costa serves as an associate editor of the ASCE Journal of Architectural Engineering, chair of ASHRAE TC 6.7 Solar Energy and Other Renewables and, subtask co-leader of the IEA PVPS Task 15 Enabling Framework for the Acceleration of BIPV.

Dr. Kuljeet Singh

Dr. Kuljeet S. Grewal is currently working as Assistant Professor in the Faculty of Sustainable Design Engineering, University of Prince Edward Island (UPEI). Before joining UPEI he worked as a Postdoctoral Researcher at the School of Architecture, Planning, and Landscape (SAPL), the University of Calgary from 2018 to 2021. Dr. Grewal earned his Doctorate from the Indian Institute of Technology (IIT) Ropar, India in Mechanical Engineering in 2018. Currently, his transdisciplinary research focus is on sustainable neighborhood and energy design that also involves the planning of clean energy resources. Upon joining UPEI in September 2021, he established Future Urban Energy Lab for Sustainability (FUEL-S). The area of work involves energy-efficient urban design and energy systems including their planning and optimization promoting longterm sustainability, technological, economic, and environmental adaption.

He is currently working as a principal investigator

on several funded research projects from the Natural Sciences and Engineering Research Council (NSERC), Natural Resources Canada (NRC), MITACS, and a couple of industrial partners. Dr. Grewal is contributing as a Design Expert in Task 63: Solar Neighborhood Planning of the International Energy Agency (IEA). He is also acting as Guest Editor for a special issues on Advances in Energy-Efficient Buildings in Energies Journal. To date, he has several highly reputed peer-reviewed journal and conference articles.

Eric Wilczynski

Eric Wilczynskiisa PhD candidate workingjointly with the Urban and Regional Energy Systems group at Eurac Research, the Copernicus Institute of Sustainable Development at Utrecht University, and the Energy Efficiency group at the University of Geneva where he is investigating energy flexibility and demand response potential in building and urban energy systems.

He holds a B.A. majoring in both Economics and Environmental Analysis & Policy from Boston University and an M.S. in Energy and Earth Resources from the University of Texas at Austin where he also conducted research for the UT Austin Energy Institute on electric utility business models. Prior to his move to Europe, he gained experience in the utilities industry in southern California.

Dr. Mohamed Ouf

Mohamed Ouf, Ph.D., P.Eng. is an Assistant Professor at Concordia University's Building, Civil and Environmental Engineering Department. He is the principal investigator of the Intelligent Buildings and Cities Lab (IBCL) and is affiliated with Concordia's Centre for Zero Energy Building Studies (CZEBS) as well as the newly established Next-Generation Cities Institute (NGCI). His research focuses on using datadriven approaches to investigate occupant-building interactions at multiple scales, ranging from zone- to building- and up to urban-scales. As an early career researcher, he published over 50 peer-reviewed journal and conference papers and received several prestigious awards in the past couple of years, while establishing collaborations with multiple industry and government partners. He currently supervises a team of more than 10 graduate students at IBCL with expertise in multiple disciplines ranging from mechanical, civil and building engineering to architecture and data science.

Dr. Ouf is actively involved in several academic and professional organizations. He currently serves on the Board of Directors of the Canadian chapter of the International Building Performance Simulation Association (IBPSA). He is also a member of the International Energy Agency; Energy in Buildings and Communities (IEA-EBC) Annex 79 on "Occupant-Centric Building Design and Operation", as well as the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), multi-disciplinary task group on occupant behaviour in buildings (MTG. OBB). Beside his involvement in these organizations, he is an active reviewer for multiple leading journals in the field, and serves on the Editorial Board of ASHRAE's Science and Technology for the Built Environment Journal.

Ashley Hammerbacher

Ashley is a Managing Director for the US division of S2E Technologies and is the EVE Park Project Lead. She is currently living and breathing everything EVE Park. Ashley is coordinating and advising on EVE Park where we are reimagining neighbourhoods for green energy along with the future of autonomous vehicles. Ashley holds a Bachelors in Bioengineering and a Masters in Civil and Environmental Engineering from Stanford University, and has accumulated a breadth of experience in green technology and intelligent mobility.

Seungyeon Hong

Seung is a Modelling and Data Specialist at s2e. His role includes providing technical analysis on all matters related to buildings. This includes developing physicsbased computer simulations to study a building's behaviour and estimate the associated energy use, which helps guide design decisions and achieve netzero energy design. Seung had earned a Bachelor's and Master's degrees in Civil Engineering at Carleton University, apprenticed as a timber-framer in South Korea, worked as structural inspector, wrote a thesis on BIM-BEM interoperability, and co-led a team of graduate students to win a national Hackathon.

SPEAKERS

Dr. Ursula Eicker

Prof. Ursula Eicker is the Canada Excellence Research Chair (CERC) in Smart, Sustainable and Resilient Cities and Communities at Concordia University Montréal. A German physicist, Eicker has held leadership positions at the Stuttgart University of Applied Sciences and its Centre for Sustainable Energy Technologies. She coordinated many international research projects in the fields of building energy efficiency, renewable energy systems and urban scale simulation.

Since June 2019, she leads an ambitious research program to establish transformation strategies toward zero-carbon cities. Around 50 graduate students work on decarbonisation pathways in the domains of the built environment, renewable energy systems, sustainable transport and circular economy. An urban data analysis and modeling framework integrates the multidisciplinary work. The 7 year research program received 10 million CAD government funding and is supported by a further 10 million Dollars by Concordia University.

In November 2020, Prof. Eicker founded Concordia's Next Generation Cities Institute, which groups 14 university research centers and 200 researchers from all faculties. Three interdisciplinary research clusters deal with Built and Natural Environments as the

hardware, Mobile, Secure and Sharing Cities as the software and Design, Arts, Culture and Community as the experience of the city. The Institute addresses the challenges of the urban transformation with a transdisciplinary approach and develops tools and strategies for a sustainable future. Prof. Eicker has published 7 Books, 24 book contributions, 100 Peer Reviewed Papers and 330 Conference Papers.

ire and Sharing Cities as th Arts, Culture and Communit e city. The Institute addresse

Overview of IEA SHC Task 63 - Planning Solar Neighborhoods

Maria Wall

This presentation provides a background on previous IEA SHC Tasks and outlines the objective for Task 63: Solar Neighborhood Planning (2019-2023). Finally, the introduction to Fall School identifies current subtasks, leadership, and participating countries.

IEA SHC Task 63 Solar Neighborhood Planning

Maria Wall, Task Manager Fall School, September 6, 2022

Technology Collaboration Programme

Background

IEA SHC Task 41: Solar Energy and Architecture, 2009-2012

IEA SHC Task 51: Solar Energy in Urban Planning, 2013-2018

Conclusion: More developments on a city district level are needed to improve and develop new strategies and methods/tools – cooperation between research and practice!

Solar Contributions

- Passive solar energy: indoors and outdoors to reduce heating demand and improve thermal comfort and health
- Daylighting buildings and outdoor areas, to reduce electricity for lighting and improve visual comfort and health
- Local renewable energy production using Photovoltaics (electricity) and Solar Thermal Systems, to help create energy/resource self-sufficient environments and not rely on energy imports, and to create resilience to energy price fluctuations
- Local food production and use of green areas for improved air quality and reducing storm water (roofs, facades, outdoor areas)

Task 63: Solar Neighborhood Planning: 2019-2023

Objective

The main objective is to support key players to achieve solar neighborhoods that facilitate longterm solar access for energy production and for daylighting buildings and outdoor environments – resulting in sustainable and healthy environments.

Scope

The scope of the Task includes solar energy aspects related to

- 1. New neighborhood development
- 2. Existing neighborhood renovation and development

Solar energy aspects include active solar systems (solar thermal and photovoltaics) and passive strategies. Passive solar strategies include passive solar heating and cooling, daylighting, and thermal/visual comfort in indoor and outdoor environments.

The role of solar aspects related to energy, environment, economy and inhabitants' comfort and health is in focus

Definition - neighborhood

A neighborhood is defined as a group of buildings, a district/precinct. It is a spatially defined specific geographic area, often including different types of buildings and functions, open space and infrastructure.

A neighborhood can be part of a larger city or a smaller village. It can be part of an urban area, a rural development or represent an isolated community.

- Connected to a district heating/cooling network or outside, giving different boundary conditions

Subtasks and leaderships

A. Solar Planning Strategies and Concepts

Leader: Caroline Hachem-Vermette, University of Calgary, Canada

B. Economic Strategies and Stakeholder Engagement Leader: Silvia Croce & Daniele Vettorato, EURAC Research, Italy

C. Solar Planning Tools

Leader: Jouri Kanters, Lund University, Sweden & Martin Thebault, University Savoie Mont-Blanc – INES, France

D. Case Studies

Leader: Gabriele Lobaccaro & Mattia Manni,

Norwegian University of Science and Technology NTNU, Norway, jointly with all leaders

Project leader (Task Manager): Maria Wall, Lund University, Sweden

Participating countries

- Australia
- Canada
- China
- Denmark
- France
- Italy
- Norway
- Sweden
- Switzerland

Thank you!

For more information about IEA SHC projects, see e.g.

Task 63: Solar Neighborhood Planning (2019-2023): <u>https://task63.iea-shc.org/</u>

Task 51: Solar Energy in Urban Planning (2013-2018): https://task51.iea-shc.org/ Task 41: Solar Energy and Architecture (2009-2012): <u>https://task41.iea-shc.org/</u>

8

Maria Wall / Energy and Building Design, Lund University

The Significant Role of Solar Energy to Mitigate Climate Change

David Renne

This presentation provides background information on the status of Greenhouses Gas emissions and concentrations, as well as renewable energy technologies as of 2022. The discussion of cost considerations in new power installations favors solar and other renewable technologies, and highlights that utility-scale solar is consistently the lowest cost option. A more distributed system will improve flexibility and achievement of climate goals. The presentation recognizes that financing the energy transformation will require a rapid shift away from fossil fuels.

The Significant Role of Solar Energy to Mitigate Climate Change

Dr. David Renné

Dave Renné Renewables Board Member: International Solar Energy Society Senior Consultant: Clean Power Research

Fall School: **Solar Neighborhood Planning** University of Calgary School of Architecture, Planning and Landscape September 6, 2022

The Big Picture - 2022

- Record high CO₂ atmospheric emissions and concentrations
- Fossil fuel prices at new highs; demand on the rise
- Record high global RE installations
- RE (especially wind and solar) plus enabling technologies lowest cost power solution
- Government ambitions still inadequate to achieve Paris Climate goals

Recent CO₂ Emission Results from the IEA

Source: IEA Global Energy Review 2021

36.2 GT in 2021

June 3, 2022 Headline from NOAA

Search NOAA sites

Carbon dioxide now more than 50% higher than pre-industrial levels

Focus areas: Research Topics: climate change, carbon dioxide

June 3, 2022

Home / News & Features

420.99 ppm

Source: NOAA

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné

The RE Transformation Remained Robust in 2021

Globally, Installed PV Capacity Has Likely Passed 1 TW

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné
Solar Costs Declined 90% in 12 Years

Source: Solar Power Europe GMO 2022

	167	
	108	
020	2021	

Utility-scale solar is consistently the lowest cost option

Projected Annual PV Capacity Additions

Status of Solar Thermal Capacity Additions

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné

Status of Other Renewable Power Systems – 2021

Wind Power

Also at end of 2021: Hydropower = 1,197 GW Biopower ~ 158 GW Geothermal Power = 14.5 GW Ocean Power = 0.524 GW

Source: REN21 GSR 2022

RE in Total Final Energy Consumption, 2019

Source: REN21 GSR, 2022

Overall, the share of modern renewables in TFEC has remained at around 20% for over a decade

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné

To Limit Warming to 1.5 °C, the "Ambition Gap" must be closed

Source: Climate Action Tracker

Required Global Investments for the Energy Transformation

Source: REN21 GSR 2022

BNEF Green Scenario

IRENA 1.5C Scenario

BNEF Red Scenario

Current (2021) annual

Fossil Fuel Subsidies Totaled \$5.9T in 2020

Fossil fuel industry gets subsidies of \$11m a minute, IMF finds

Trillions of dollars a year are 'adding fuel to the fire' of the climate crisis, experts say

A state-owned coal-fired power plant i in Huainan, Anhui province, China. Photograph: Kevin Frayer/Getty Images

Source: https://www.theguardian.com/environment/2021/oct/06/fossil-fuel-industry-subsidies-of-11m-dollars-a-minute-imf-finds

Closing the Gap Requires Total Energy System Decarbonization

- Improved efficiencies in supply, demand and delivery
- Significantly-expanded electrification (direct and indirect)
- Electrification based largely on VRE (solar and wind)
- Grid flexibility and reliability; smart grids, Al
- Sector Coupling
- Hard-to-abate sectors relying on thermal RE and P-to-X technologies

Working Definition of "100% Renewable Energy"

47

One hundred percent renewable energy means that all sources of energy to meet all end-use energy needs in a certain location, region or country are derived from renewable energy resources 24 hours per day, every day of the year. Renewable energy can either be produced locally **to meet all local enduse energy needs (power, heating and cooling, and transport)** or can be imported from outside of the region using supportive technologies and installations such as electrical grids, hydrogen or heated water. Any storage facilities to help balance the energy supply must also use energy derived only from renewable resources.

Zero (not net-Zero) Energy-Related Carbon Emissions!

Source: IRENA Coalition for Action, Working Group on "Towards 100% Renewable Energy"

Grid's ability to manage variability and volatility to balance energy supply and demand

Supply Side: Storage solutions, smart inverters, V-2-G, Green H_2

Transmission and Distribution: Pooling generation commitments, storage, balancing, "islanding"

Demand Side: Self-consumption and behind-the-meter storage, demand response, smart charging, sector coupling

Source: Accenture, https://www.accenture.com/us-en/insights/utilities/capturing-value-managing-energy-flexibility

"Sector Coupling" Supports Felxibility

- Combines at least two of the different production and demand sectors (electricity, heating & cooling, transport, industrial processes)
- Provides power system flexibility that leads to a fully RE-based system
- Results in significantly higher levels of direct and indirect electrification

Source: IRENA, IEA, and REN 21, 2018: Renewable energy policies in a time of transition

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné

Summary Overview of "Flexibility Enablers"

Source: IRENA, 2018.

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné

What do 100% RE and even NZE "Pathway" Studies Tell Us?

- Rapid shift towards clean energy and away from fossil investments
- Significant electrification of end use energy (50 90% of TFEC)
 - Transport (EV's, railways, shipping)
 - Buildings (Heating and cooling, cooking)
- Electricity primarily from renewables (driven by costs)
 - Wind and solar will be primary supply
 - Major grid upgrades and storage will provide flexibility and resource adequacy
- Major growth in use of green hydrogen
- Total final energy consumption decreases
 - Energy efficiency measures
 - Lower per-capita energy intensity while still meeting end use energy requirements

Scenarios Show Major Market Potential for Solar PV

Source	Scenario	Electricity in TFEC	Electricity Supplied by P
IRENA (2021)	1.5°C Scenario	51%	~37%
IEA (2021)	NZE by 2050	49%	43%
BNEF NEO (2021)	Green (NZE by 2050)	49%	32%
University Technology Sydney (2019)	1.5 ⁰ C Target Increase Scenario	57%	49%
Energy Watch Group/LUT (2019)	100% RE by 2050	90%	76%

Source: D. Renné in "Solar Compass" (https://www.sciencedirect.com/science/article/pii/S2772940022000017 via%3Dihub.)

Key Take-Away Messages

- The energy transformation, where all energy supply and end use consumption is decarbonized needs to be greatly accelerated
- Cost considerations favor solar and other renewable technologies to dominate new power installations
- Solar will also play key role in many thermal application markets
- Financing the transformation requires rapid shifting of resources away from fossils and toward renewables
- A more distributed system will improve flexibility and achievement of climate goals

Thank You!

Dave Renné drenne@mac.com

Fall School: Solar Neighborhood Planning September 6, 2022 - Renné

- 55

Positive Energy Districts

Francesco Guarino

The presentation presents an overview of IEA EBC Annex 83 "Positive Energy Districts" by identifying subtasks, objectives, and leadership. The discussion on Positive Energy Districts is prefaced with several definitions related to "net," "nearly," "zero carbon," and "positive". The presentation highlights the path towards energy positive districts, and concludes with the risks and challenges of Positive Energy Districts, which range from regulatory frameworks to financing structures.

Positive Energy Districts

Francesco Guarino, IEA EBC Annex 83 Operating Agent

University of Palermo

IEA SHC Task 63 Fall School, Zoom, September 6th, 2022

Technology Collaboration Programme

About me

- Assistant Professor at the University of Palermo, department of Engineering
- M.Sc in Energy engineering in 2011 and Ph.D. in Energy in 2015 on "Building integrated phase change materials energy storage: experimental studies, modelling and parametric analysis"
- Operating agent (Previously Subtask C leader) of IEA EBC Annex 83 "Positive Energy Districts"
- Research interests: sustainability in the building and energy sector, Life Cycle Assessment of buildings and energy technologies, building physics and building simulation, low-carbon and renewable energy technologies.

www.iea-shc.org

IEA EBC - Annex 83 - Positive Energy Districts

What are Positive Energy Districts?

The basic principle of Positive Energy Districts (PEDs) is to create an area within the city boundaries, capable of generating more energy than consumed and agile/flexible enough to respond to the variation of the energy market because a PED should not only aim to achieving an annual surplus of net energy. Rather, it should also support minimizing the impact on the connected centralized energy networks by offering options for increasing onsite loadmatching and self-consumption, technologies for short and long term storages, and providing energy flexibility with smart control.

Annex 83 Positive Energy Districts

The aim of Annex 83 is developing an in-depth definition of PED and the technologies, planning tools and planning and the decision-making process related to positive energy districts. Experience and data to be used in the Annex will be gained from demonstration cases.

https://annex83.iea-ebc.org

ANNEX INFO & CONTACT Status: Ongoing (2020 - 2024) OPERATING AGENTS

Francesco Guarino Assistant Professor University of Palermo -Department of Engineering ITALY. Tel: +3909123861926 Email

Dr. Francesco Reda

Principal Scientist, Smart cities and intelligent buildings VTT Technical Research Centre of Finland Ltd. Espoo FINLAND Tel: +358 40 8403680 Email

Energy in Buildings and Communities Programme

59

www.iea-shc.org

About IEA EBC Annex 83 "Positive Energy Districts"

- Organization and SubTasks
- Subtask A: Definition and contest
- Subtask B: Methods, Tools and Technologies for Realizing Positive **Energy Districts**
- Subtask C: Organizing principles and impact assessment
- Subtask D: Demos, implementation and dissemination

About IEA EBC Annex 83 "Positive Energy Districts"

Objectives

5

- Objective 1. Mapping stakeholders and their needs and role. Building owners and users, city planners, service providers, developers, investors, R&D organizations, policymakers, technology providers, local authorities, etc.
- Objective 2. Create a shared in depth definition of PED by means of mutlistakeholder governance model (Policymakers, local authorities, R&D organizations, energy utilities, etc.)
- Objective 3. Mapping emerging technical solutions and taxonomy of technologies: Energy utilities, service providers, developers, designers and planners, technology providers, R&D organizations, energy entrepreneurs and prosumers, etc.
- Objective 4. Monitoring solutions and data related technical and service opportunities: Energy utilities, grid operators, service providers, developers, designers and planners, technology providers, R&D organizations, energy entrepreneurs and prosumers, etc.
- Objective 5. Planning and implementation methodology: Local authorities, designers, grid operators and planners, developers etc.

IEA EBC ANNEX 83 – Ph.D. S ummer school "Positive Energy Districts: Towards a holistic approach to modeling and performance assessment"

- AIM: Generate a professional network among the Ph.D. Students within Annex 83, help them create work relationships and international contacts.
- Dates: 4th- 8th of July (some preliminary lectures online)
- Where: Concordia University,
- What: Lectures / class & group activities; class presentations on the advancements of the group assignments; social activities (e.g. Ph.D. Project presentations to encourage networking),
- Who: International and Concordia students

Net, nearly, zero carbon, positive What does ZERO mean?

About the definitions

- Low energy house 1.
- High performance buildings 2.
- 3. Energy saving house
- Ultra low energy house 4.
- 5. Zero energy house
- Zero energy buildings 6.
- 7. Passive house
- Zero heating energy house 8.
- Plus energy house 9.

- Zero carbon house 10.
- 11. **Emission free house**
- Carbon free house 12.
- Energy self sufficient 13.
- **BREEAM** building 14.
- EQuilibrium house 15.
- Green building 16.
- Very low energy house 17.
- Climatic active house 18.
- Although these terms have different meaning and are poorly understood, several IEA countries have adopted this vision as a long-term goal of their building energy policies

Net ZEB Energy Balance

Planning: 1.Generation/Load

Independent calculation of on-site energy generation (PV, CHP,...) and building total energy demand

Operation: 2.Export/Delivered

monitoring of net energy flow at the point of grid interaction considering internal load match.

Mixed : 3."Virtual" Load Match

Independent calculation of on-site energy generation and demand plus monthly based balance.

virtual monthly self-consumption

About Positive Energy Districts

• "[...] a PED* is seen as a district with annual net zero energy import, and net zero CO₂ emission working towards an annual local surplus production of renewable energy."

*https://jpi-urbaneurope.eu/wp-content/uploads/2021/10/setplan smartcities implementationplan-2.pdf

www.iea-shc.org

SET-Plan ACTION n°3.2 Implementation Plan

About Positive Energy Districts

MISSION: to bring about 100 PEDs in EU by 2025

IMPLEMENTATION:

- Funding of R&I for methodologies, technologies and solutions in support of those • stakeholders, who decide upon urban investments including city administrations, utilities, real state investors;
- Mainstreaming PEDs through a shared definition which reflects their position in the future energy system:
- A share of renewable energy to be provided by the national-regional system 1)
- System compatibility (through energy flexibility, energy storage, sector coupling) 2) reflecting the responsibility of urban areas as the largest energy consumers in the system
- 3) Energy efficiency balanced with on site generation of renewable energy

69

SET-Plan ACTION n°3.2 Implementation Plan

About Positive Energy Districts

Main objectives of defining PEDs:

- Motivation and support for city administrations and the real estate sector to transform urban areas & their built environment towards climate-neutrality;
- Accounting for the framework conditions in Europe (climate) zones, national energy systems, RE- potential)
- Forward looking: «100% renewable energy» scenario of 2050 as a baseline
- **The goal:** a realistic target for optimal support by (nationally) generated Renewable energy to achieve climate-neutrality in urban areas
- In this perspective «Positive energy» does not only mean to «go beyond the net-zero balance»

14

SET-Plan ACTION n°3.2 Implementation Plan

What is a PED?

shc.org

Geneis District SALZBURG, AUSTRIA

230 Housing units

- Energy sharing with the neighbour buildings
- Smart home technolo
- Integrated energy systems and low temperature microg id

- Renovation incentives
 - Participatory design
- User behaviour assessme

Demo neighbourhood Barcelona

ising units

strict heating network sharing with

ements

sy manager and visualisatio

ewable energy generation is beyond the requirements of building code ve public procurement with sustainable and environmental

FRNATIONAL ENERGY ASE

74 Demo neighbourhood Oslo

154 Housing units o Smart house technology O Low carbon design

o Recycled materials in construction

o Shared spaces

O Technical IT platform to initiate activities to create a vibrant neighbourhoo O Smart charging of electric vehicle

About Positive Energy Districts

Definitions

PED autonomous

'Plus Autarkic' net positive yearly energy balance within the geographical boundaries of the PED and internal energy balance at any moment in time (no imports from the hinterland (thus considering any energy carrier) not even helping to balance the wider grid outside)

PED dynamic

Net positive yearly energy balance within the geographical boundaries of the PED but dynamic exchanges with the hinterland to compensate for momentary surpluses and shortages

PED_{virtual}

Net positive yearly energy balance within the virtual boundaries of the PED but dynamic exchanges with the hinterland to compensate for momentary surpluses and shortages

Pre-PED

No net positive yearly energy balance within the geographical boundaries of the PED but energy different acquired on the market by importing certified green energy (i.e. realizing a zero carbon district)

Definitions and system boundaries

PED alpha

A PED Alpha is a district that has a positive annual primary energy balance, based on all energy services and monthly conversion factors. This includes **operational energy** and user electricity.

PED alpha+mobility

This definition of PED meets the above criteria with the inclusion of private everyday mobility.

PED Omega

A PED Omega covers all of the above as well as the **embodied energy** for structural, technical building and everyday mobility. This can be further expanded in order to included individual emissions of comsumption, nutrition to connect to individual carbon budgets.

78

SOLAR HEATING & COOLING PROGRAMM INTERNATIONAL ENERGY AGENCY

79

Surplus to

Demand (Efficient lighting and appliances

Qualitative features of PEDs

Holistic approach towards sustainable, liveable neighborhoods/integrative perspective (integrating technological, spatial, regulatory, financial, legal, economic, social, cultural and governance aspects)

CO

- Synergetically connected to the wider energy/mobility/infrastracture. Sometimes the circular economy/sustainable urban metabolism is put forward
- Mixed use & functions, strong public spaces, integrating green and blue networks
- Social inclusiveness accesibility, acceptability and diversity
- High and affordable quality of living environmental quality (air, noise, security architectural, urban & landscape quality – affordability
- **Citizen centered** added value and incentives for the consumer interested and engaged users, citizen involvement from the outset, role of community ambassadors and emotional buy-in
- Context-sensitive, co-created with local community, embedded in local community, culture& patrimony, urban tissue – 'location, location, location'
- **Exemplary & education role** including up to eco-tourism; scalable and replicable character

24

System boundaries

Different possibilities and geographic limitation

Primary energy / final energy

The EC seems to point towards final energy

Mobility

How to include mobility in PED balances?

Are we considering the appropriate scale level?

11 - (1911)

INTERNATIONAL ENERGY AGENCY

Risks and challenges

- **Regulatory frameworks:** urban planning regulations, energy market rules, prescriptions, fiscal and financial regulations, public budget and tendering regulations
- Need for competent planners (knowhow, tools, communication, talent and creativity) & proper capacity at all levels (local authorities, solutions providers, developers) 'planning for change', need for integrated planning capacity
- Data privacy vs value-added tailored services, effective and optimized energy & mobility maagement
- Financing structures: mixed funding models, role of public investment for realising long-term infrastructures, identifying suitable business models. Ownership structures and financing beyond the common short & mid term horizons, sharing models for costs & benefits across actors/investors
- Cross sectoral and cross-silo collaboration in order to acquire integrated solutions and maximizing secondary benefits.

Positive Energy Districts

Francesco Guarino IEA EBC Annex 83 Operating Agent University of Palermo Department of engineering francesco.guarino@unipa.it

www.iea-shc.org

@IEASHC

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

- 87

Environmental Performances and Sustainability Assessment in the Building Sector

Maurizio Cellura

The presentation discusses first the differences between embodied energy and operational energy, then posits that decarbonizing the building sector relies on more than just assessment at the building scale. Life Cycle Assessment (LCA) is presented in details, followed by the identification of gaps in current LCA research. The qualitative and quantitave environmental impacts assessment of positive energy disctict are introduced and discussed, as well. A key takeaway from the presentation is the need for a standardized approach to assessing environmental impacts at the district scale.

Environmental performances and sustainability assessment in the building sector

Maurizio Cellura, Environmental performances and sustainability assessment in the building sector IEA SHC TASK 63: Solar Neighborhood Planning Fall school, September 8th, 2022

Technology Collaboration Programme

Embodied energy vs operation energy

Embodied energy a key issues to assess the energy demand of low energy buildings

- Design of low energy buildings addresses the target of reducing the operating energy, by improving the thermal insulation of the building envelope, reducing infiltration losses, recovering heat from ventilation air and/or waste water, installing renewable energy technologies for heating, domestic hot water and electricity generation. However, the reduction of the operating energy demand involves as increase in embodied energy of the building due to energy intensive materials used in the building shell and technical equipment.
- When shifting from standard houses to low energy buildings and to Net ZEBs the relative share of operating energy decreases, while the relative share of embodied energy increases.
- Therefore, the lower the operating energy, the more important it is to adopt a life cycle approach to compare the energy saving achieved in the building operation with respect to the overall life-cycle energy consumption.

Is the building scale **enough**? If the aim is to decarbonize the building sector, what are we overlooking?

Positive Energy Districts

[...] In this context, a PED is seen as a district with annual net zero energy import, and net zero CO₂ emission working towards an annual local surplus production of renewable energy. [...]

JPI URBAN EUROPE – SET PLAN Action n.3.2 Implementation plan

4

www.iea-shc.org

And the environmental aspects?

The Life Cycle Assessment (LCA)

The Life Cycle Thinking

The LCA is a way of thinking, an approach to get an overview of the energy and environmental performances of products and services.

We talk about the LIFE CYCLE THINKING approach.

Life Cycle Thinking (LCT) goes beyond the traditional productive goals and includes environmental, social and economic impacts of a product over its entire life cycle.

The main goals of LCT are to reduce a products resource use and emissions to the environment as well as improve its socio-economic performance through its life cycle.

The Life Cycle Assessment (LCA) is a "compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle" (Source: ISO 14040)

The LCA is an "objective procedure for assessing the energy and environmental loads related to a process or activity, carried out by identifying the energy and materials used and the waste released into the environment" (Source: SETAC)

Why the Life Cycle Assessment?

- It prevents to move the problems from one life-cycle step to another;
- It prevents to move the problems from an impact category to another;
- It captures the complexity hidden behind a product;
- •It is a useful tool to compare products and services on a scientific basis.

LCA allows to have a global overview of the product throughout its life cycle, also including some impacts normally ignored or neglected (such as those related to the final disposal).

The Life Cycle Assessment Framework

There are four phases in a LCA study.

The scope, including the system boundary and level of detail, of an LCA depends on the subject and the intended use of the study. The depth and the breadth of LCA can considerably differ depending on the goal of a particular LCA.

System boundaries

From cradle to grave

From cradle to gate

The Life Cycle Assessment Framework

There are four phases in a LCA study.

The life cycle inventory analysis phase (LCI phase) is the second phase of LCA. It is an inventory of input/output data with regard to the system being studied. It involves collection of the data necessary to meet the goals of the defined study.

shc.org

Input: raw materials (including water), energy sources

Output: waste, air emissions, water emissions, soil emissions

www.iea-shc.org

The Life Cycle Assessment Framework

There are four phases in a LCA study.

life cycle impact The assessment phase (LCIA) is the third phase of the LCA. The purpose of LCIA is to additional provide information to help assess a product system's LCI results so as to better understand their environmental significance.

Some impact category indicators

www.iea-shc.org

Weighting

Environmental score (Eco-point)

The Life Cycle Assessment Framework

There are four phases in a LCA study.

Life cycle interpretation is the final phase of the LCA procedure, in which the results of an LCI and/or an LCIA, or both, are summarized and discussed as a basis for conclusions, recommendations and decision-making in accordance with the goal and scope definition.

Environmental impacts assessment of Positive Energy Districts: Quantitative results analysis

- Studies available in literature use very diverse system boundaries and methodological • assumptions
- In some cases the quantitative metric evaluated corresponds to the area of district, in others to the walkable area of the built environment, sometimes being annualized or merely reported as a lump-sum emissions
- The system boundaries are also variable with distinction to the facilities and aspects of the district (e.g. onsite energy supply systems, buildings, mobility, impacts allocation) as well as to the life cycle stages to be included

Results are VERY diverse and variable

Environmental impacts assessment of Positive Energy Districts: Quantitative results analysis: Dynamic GWP

Method:

- Inventory flow shouldn't be omitted from an assessment; ۲
- All impacts of all substances contributing to an impact category should have the same **Time Horizon of the** ۲ **Impact** (*THI*) in the indicator used for that impact category;
- The THI has no reason to change as a function of time. •

Results

Thus, the total observation duration (TOD) to consider for any dynamic approach is TOD = LCD + THI, where LCD is life cycle duration.

Conclusions

At a time when the dynamic GWP indicator is being considered as a regulatory tool on a French or even European scale, it seems crucial to consider its scientific relevance, because using the wrong method could lead to an overestimation of the possible beneficial effects of temporary carbon storage in the construction sector as a whole.

Environmental impacts assessment of Positive Energy Districts: Quantitative results analysis: Dynamic GWP

20

www.iea-shc.org

Environmental impacts assessment of Positive Energy Districts: Quantitative results analysis: Dynamic GWP

$$\sum_{x} \sum_{i} \int_{t_i}^{TOD} a_x \cdot C_x (t - t_i) \cdot dt$$

$$\int_{0}^{TOD} a_{CO2} C_{CO2}(t) dt$$

i: index for each moment of an emission of a substance x during the time considered x: index for each GHG t_i: moment of an emission (years) TOD: Total Observation Duration (years) a; radiative efficiency of x (Wm².kg¹ of x) acos: nadiative efficiency of CO₂ (Wm²kg¹ of CO₃) C₂: degradation curve of GHG x (ppb.kg¹) Cross degradation curve of CO, (pphkg¹)

109

SOLAR HEATING & COOLING PROGRAMM INTERNATIONAL ENERGY AGENCY

Environmental impacts assessment of Positive Energy Districts: Quantitative results analysis: Dynamic GWP

HG2

Environmental impacts assessment of Positive Energy Districts: Quantitative results analysis: Dynamic GWP

Complexity of the domain for LCA applications:

- Functional unit definition (PED Definition); \bullet
- Methodological uncertainty and lack of homogenous approaches (Territorial LCA / integration with GIS);
- Other uncertainties: Inclusion of transports, industry, Street lighting, Residential (unpredictable) • behaviour (energy use, products use, transports), urban metabolism data;
- Data quality and limits of the available inventory datasets.

Research on LCA for technological applications of NZEBs can be extended also to the district level*. Some specific examples:

- Datasets for modelling specific air-water heat pumps are not available. Proxy are usually used in the practice;
- Pumps, expansion vessels, heat storage tanks, ion-exchanger, flat solar thermal collectors (and all specific technical equipment) are usually modelled by scaling up or down the available LCI on the Ecoinvent 3.6 (specific to the Swiss case);

* Maria Anna Cusenza, Francesco Guarino, Sonia Longo, , An integrated energy simulation and life cycle assessment to measure the operational and embodied energy of a Mediterranean net zero energy building, Energy and Buildings, Volume 254, 2022, 111558, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2021.111558.

Research on LCA for technological applications of NZEBs can be extended also to the district level*. Some specific examples:

- When enough information is available, datasets are modified while being used as proxies;
- When the information is not available for products and technical systems: only the materials of the main bodies of each device is considered. In the case of e.g. manifolds or valves in the specific case and based on the CAD drawings, it was estimated that the 95% of the total weight was connected to the main body. Assumptions are developed case by case;

* Maria Anna Cusenza, Francesco Guarino, Sonia Longo, , An integrated energy simulation and life cycle assessment to measure the operational and embodied energy of a Mediterranean net zero energy building, Energy and Buildings, Volume 254, 2022, 111558, ISSN 0378-7788, https://doi.org/10.1016/i.enhuild.2021.111558

Research on LCA for technological applications of NZEBs can be extended also to the district level*. Some specific examples:

• When assumptions are not reasonably performable, datasets are **excluded** from the analysis. This was the case in * for thermometers and pressure gauges and other sensor equipments.

* Maria Anna Cusenza, Francesco Guarino, Sonia Longo, , An integrated energy simulation and life cycle assessment to measure the operational and embodied energy of a Mediterranean net zero energy building, Energy and Buildings, Volume 254, 2022, 111558, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2021.111558.

These considerations have been formulated for the single buildings scale. Similar consideration (of a much wider spectrum) can be formulated for the district scale

A framework for application of Life Cycle Assessment to Positive Energy Districts is being discussed and developed within IEAEBC ANNEX 83 – Subtask C.

* Maria Anna Cusenza, Francesco Guarino, Sonia Longo, , An integrated energy simulation and life cycle assessment to measure the operational and embodied energy of a Mediterranean net zero energy building, Energy and Buildings, Volume 254, 2022, 111558, ISSN 0378-7788, https://doi.org/10.1016/i.enbuild.2021.111558.

Energy Generation mixes can also impact severely the results: they are usually based on average calculations extended to a whole year, taking in considerations:

- Technological considerations on the energy generation systems;
- Energy flows at the local level (macro-areas of interest);
- Energy import/export at the national level (e.g. Nuclear energy in Italy);
- All significant environmental impacts are considered kWh of electricity per generated.

Average electricity mixes are usually used in the common LCA practice.

What happens if the focus becomes **DYNAMIC** (electricity generation mix variable with a hourly detail) rather than staying **STATIC** (average annual national value)?

Environmental impacts assessment of Positive Energy Districts: Conclusions

- 1. There is a specific **need for a standardized approach** when assessing environmental impacts at district scale, with different scopes and indicators. Since assessment methods have major impacts on the results and their validity, transparent approaches are needed to avoid misleading results that may lead to inaccurate decisions.
- 2. It is very common to merely mention and calculate KPIs without investigating **trade-offs** between design alternatives. Integrated and systematic analyses to address this aspect should be favored and further investigated;
- 3. The focus of assessment should not only be on the operation, but also on other life cycle stages. For example, for greenhouse gas emissions, this means not only direct emissions should be considered, but also the indirect emissions caused by the buildings, infrastructures and activities within the district.

Environmental impacts assessment of Positive Energy Districts: Conclusions

- 4. In order to avoid shifting burdens between environmental impacts, they should be considered as far as possible in a holistic and integrated manner. Therefore, the spectrum of indicators for Life Cycle Impact Assessment should not be limited to GWP and/or cumulative energy demand only, but extended to other impact categories relevant for district planning, such as resource depletion and air-pollution related impacts along the supply chain of materials;
- More research is required in the field of LCA at the district level (Urban metabolism, 5. territorial LCA, system boundaries, temporal horizon, application for **early design**)
- 6. Uncertainty and sensitivity analyses are rarely performed (although highly suggested) and should be therefore addressed with proper methods.
- 7. Need to take into account for **long-term developments** in technologies and improvements in production processes for the replacement materials, more dynamic approaches, systematic and transparent integration with other modeling scenarios (e.g. energy scenarios) should be investigated (e.g. dynamic LCA)
- 8. Potential to include spatial constraints and hotspots identification (GIS integration)
- Linkage between the assessment result of PEDs with higher-level environmental targets 9. (e.g. climate goals at city and national levels/ sustainable development goals) are current missing and should be better addressed.

Thanks

Maurizio Cellura University of Palermo - Department of Engineering Palermo (Italy) $+39\ 091\ 23861931$ Maurizio.cellura@unipa.it

www.iea-shc.org

@IEASHC

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

Electrification of the Built Environment: Designing Future Buildings and Communities

Costa Kapsis

A primary objective of this presentation is to establish an understanding of: smart grid technologies; design and implementation challenges; and effective technical solutions. Another objective is to provide insights into the deployment of smart distributed energy resources (DER) in heat pumps, building integrated photovoltaics, and electric vehicles. The presentation concludes with two case studies: the Evolv1 Office Building (Waterloo, ON) and the Varennes Public Library (Varennes, QC).

Electrification of the Built Environment:

Designing Future Buildings and Communities

Costa Kapsis, PhD, CEE, University of Waterloo

Fall School, September 8th, 2022

Technology Collaboration Programme

Learning Objectives

• Gain an understanding of:

- 1. smart grid technologies
- 2. design and implementation challenges, and
- 3. effective technical solutions.

Provide insights to the deployment of smart distributed energy resources (DER):

- 1. heat pumps (HP)
- 2. building-integrated photovoltaics (BIPV), and
- 3. electric vehicles (EV)

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS) Task 15: Enabling Framework for the Development of BIPV
- Waterloo Institute for Sustainable Energy (WISE)
- Centre for Zero Energy Building Studies (CZEBS) Concordia University
- City of Varennes (case study)
- Cora Group (case study)

Outline

- Electrification Imperatives
- Enabling Demand Flexibility
- Distributed Energy Resources (DER)
 - Heat Pumps
 - Building-Integrated Photovoltaics •
 - Electric Vehicles
- Case Studies

Global Building Sector

Globally, buildings and construction sector accounts for:

- 36% of global final energy use
- 39% of energy-related Greenhouse Gas (GHG) emissions
- World's fastest growing energy demand sector (annual growth of 2%)
- Towards Carbon Neutral Buildings (NetZCB)
 - Combustion-free buildings that produce as much energy (from renewable energy sources) as they consume, in an average year
 - Path to success: energy conservation, energy efficiency, renewable energy generation
 - Integration of energy, building and transportation sectors

e.g., Canada

In Canada, the building sector accounts for:

- 28% of secondary energy use
- 22% of GHG emissions

• The passenger vehicles account for:

- 7% of secondary energy use
- 6% of GHG emissions

Mitigation of climate change

- by 2030: Net Zero Energy Ready Buildings (NetZER)
- by 2040: 100% electric passenger vehicles (EV)
- by 2050: Net Zero Carbon Buildings (NetZCB)

building, transportation and energy sectors

A smart grid enables the electrification and decarbonization of the

Electrification Imperatives

- Switch to cleaner forms of energy as part of a climate change mitigation plan (environmental imperative)
- Maintain electricity affordable for all (financial imperative)
- Balance electricity generation with load otherwise the grid may become unstable (technical imperative)
- Enable integration and interoperability of Distributed Energy Resources (DER) for resilience (technological imperative)
- Support the electrification of the transportation sector (transportation sector imperative)

Enabling Demand Flexibility

Enabling Demand Flexibility

- Development of standard metrics and methods to measure and verify demand flexibility and resilience is necessary
- Various layers are required to capture the full potential for demand flexibility ۲
- Connectivity and interoperability between layers and across the grid are essential •

Standards Ma 0 Sma

Distributed Energy Resources

Distributed Energy Resources (DER)

- Simply put, DER is a source or sink of power that is interconnected with the grid, in front or behind a customer meter. These resources may include, but are not limited to, HVAC, thermal and electrical storage, distributed generation and electric vehicles
- From a centralized one-directional energy model to a decentralized bidirectional one ۲

www.iea-shc.org

Distributed Energy Resources (DER)

- Depending on the DER, various services to the grid can be provided
- Distributed means (climate and energy) resilient •
- NOTE: Energy efficiency measures (e.g., upgrade of the building envelope) continue to be the most cost ۲ (and energy) effective action

Heat Pumps (HP)

- CO₂ refrigerant HPs: highly efficient systems for space conditioning (heating + cooling), ideal for cold climates with insignificant global warming impact if leaked
- Ground-source HPs: ideal for new commercial, institutional, retail buildings
- Variable Refrigerant Flow (VRF) HPs: ideal for new and retrofit buildings where space for ducting is limited
- Ductless mini-split HPs: ideal for new and retrofit residential applications
- HPs have proven to be a cost-effective solution for new (and occasionally retrofit) applications, enabling electrification, and demand flexibility.

In E.U., HPs are treated (regulatory) as renewable energy resources

REFERENCE: C. JOHN, 2021, A STUDY OF BUILDING THERMAL DYNAMICS FROM LARGE DATA SETS: AN APPLICATION FOR RESIDENTIAL SMART THERMOSTATS.

) °C	 <i>T_{in}</i> (t=0)
.0°C.	 Multiple of $\tau_{win, 6}$
5.0°C	Acceptable Thermal Comfort Range
5.0°C	Low Thermal Comfort Range

τ_{win} : thermal time constant (winter)

- Climate Zone 4 ($\tau_{win, 4}$ = 19 hr)
- Climate Zone 5 ($\tau_{win, 5}$ = 28 hr)
- Climate Zone 6 ($\tau_{win, 6}$ = 40 hr)
- Climate Zone 7 ($\tau_{win, 7}$ = 47 hr)

T_{in,t_d} : target temperature (e.g., 18°C)

 $T_{in.0}$: initial indoor temperature (e.g., 21°C)

T_{ext} : exterior ambient temperature

 t_d : thermal delay (AKA time required for indoor temperature to passively drop from $T_{in,0}$ to T_{in,t_d})

Building-Integrated Photovoltaics (generation)

BIPV/Building/Grid Interactions

Photovoltaic Technologies: Colour and Texture

Most coatings and printing methods developed for laminated glass can be applied on BIPV

Applying coatings, prints or etching on BIPV laminated glass reduces electrical efficiency •

REFERENCE: IEA PVPS TASK 15. COLOURED BIPV : MARKET, RESEARCH AND DEVELOPMENT

Photovoltaic Technologies: Colour and Texture

• For glass-based PV solutions, any colour, shape and texture is virtually possible

Like any building material, customization strongly impacts module prices (per m²)

REFERENCE: IEA PVPS TASK 15. COLOURED BIPV : MARKET, RESEARCH AND DEVELOPMENT

Energy Impact Assessment

Energy Impact Assessment

REFERENCE: KAPSIS, K., & ATHIENITIS, A. K. (2015). A STUDY OF THE POTENTIAL BENEFITS OF SEMI-TRANSPARENT PHOTOVOLTAICS IN COMMERCIAL BUILDINGS. SOLAR ENERGY, 115, 120-132.

144

22

www.iea-shc.org
Daylighting Optimization

REFERENCE: KAPSIS, K., DERMARDIROS, V., & ATHIENITIS, A. K. (2015). DAYLIGHT PERFORMANCE OF PERIMETER OFFICE FAÇADES UTILIZING SEMI-TRANSPARENT PHOTOVOLTAIC WINDOWS: A SIMULATION STUDY. ENERGY PROCEDIA, 78, 334-339.

Grid-Connected Photovoltaic Systems

- AKA grid-tie systems (usually no battery storage)
- During a power outage, the system will shut down ۲
- Typically used to reduce energy consumption from the grid (and reduce peak power demand if battery storage is used)

- parallel-to-the-grid mode
- ۲ heat waves, ice storms, etc.

24

It can function in an isolated mode (when the grid is down) or in a

Typically used to reduce energy consumption from the grid, reduce peak power demand and enhance energy resiliency

Recommended for areas vulnerable to earthquakes, hurricanes,

www.iea-shc.org

Grid-Connected Photovoltaic Systems

Inverter Configurations

- In the case of a string inverter, several modules are connected in the form of PV strings or arrays •
- In the case of microinverters, each individual PV module has its own microinverter ٠
- Occasionally, power optimizers are connected to individual modules, able to optimize the power output of each module ۲

Optimized BIPV Envelope Solutions

Roof Assembly Wall Assembly Single Detached Houses MURB Sweden Switzerland BIPV roofing -Drained/vented cavity (contains cable conduits) Water control membrane Coverboard fastened back to deck -Rigid insulation -Airflow control membrane Roof deck/sheathing -Roof structure

www.iea-shc.org

BIPV cladding Drained/vented cavity (contains cable conduits) Exterior fire-resistant insulation Membrane or drainage plane, air barrier and vapor retarder Non paper-faced exterior gypsum sheathing, plywood or oriented strand board (OSB) Uninsulated steel stud cavity Gypsum board Latex paint or vapor semi-permeable wall finish		
 Drained/vented cavity (contains cable conduits) Exterior fire-resistant insulation Membrane or drainage plane, air barrier and vapor retarder Non paper-faced exterior gypsum sheathing, plywood or oriented strand board (OSB) Uninsulated steel stud cavity Gypsum board Latex paint or vapor semi-permeable wall finish 		BIPV cladding
Membrane or drainage plane, air barrier and vapor retarder Non paper-faced exterior gypsum sheathing, plywood or oriented strand board (OSB) Uninsulated steel stud cavity Gypsum board Latex paint or vapor semi-permeable wall finish		——Drained/vented cavity (contains cable conduits) ——Exterior fire-resistant insulation
Non paper-faced exterior gypsum sheathing, plywood or oriented strand board (OSB) Uninsulated steel stud cavity Gypsum board Latex paint or vapor semi-permeable wall finish		——Membrane or drainage plane, air barrier and vapor retarder
Uninsulated steel stud cavity Gypsum board Latex paint or vapor semi-permeable wall finish		 Non paper-faced exterior gypsum sheathing, plywood or oriented strand board (OSB)
Gypsum board Latex paint or vapor semi-permeable wall finish		——Uninsulated steel stud cavity
Latex paint or vapor semi-permeable wall finish	•	———Gypsum board
	•	——Latex paint or vapor semi-permeable wall finish

Optimized BIPV Envelope Solutions

Stick-in Curtain Wall

www.iea-s

149

Unitized Curtain Wall

Solar Availability Study

- Account routine shading (e.g., self-shading, shading due to surrounding buildings and topography ٠
- When possible, also account for temporary shading (e.g., shading due to vegetation, snow, soiling) •

Solar Availability Study

plication	а	b	Δt		
BAPV or od rear on	-3.47	-0.0594	3		
V with entilation	-2.98	-0.0471	1		
with poor ation	-2.81	-0.0455	0		
ng BIPV n Iow-e g	-2.85	-0.0351	9		
g BIPV 1 low-e 15	-2.88	-0.0319	11		

Electric Vehicles (demand + storage)

Electric Vehicles (unidirectional)

- EV is likely to increase the evening peak loads due to residential charging
- if EV are treated as DER, they create a demand-side opportunity whose full potential is yet to be realized
- EV can provide load balancing by charging when grid is underutilized
- Despite regulatory and infrastructure gaps charging networks have moved beyond pilot stage
- Charging Levels
 - AC Level 1: up to 1.92 kW (residential applications)
 - AC Level 2: up to 19.2 kW (residential and commercial applications)
 - DC Level 1 : up to 80 kW (transportation corridor)
 - DC Level 2: up to 400 kW (transportation corridor)

Electric Vehicles (unidirectional)

- Typical driving mileage per day is ~45 km (~28 miles)
- Average EV range is ~380 km (~240 miles)
- If EV regulations allow bidirectional flow
- Prediction scenarios: By 2040, 1/3 vehicles on the road to be EV •
- Research indicates that even without vehicle-to-grid power flow, EV have the potential to:
 - Reduce GHG emissions by replacing conventional vehicles
 - Enable greater integration of renewables including BIPV by reducing curtailment ulletof renewable production
 - Flatten the daily electricity demand profile in buildings.

Case Studies

Evolv1 Office Building, Waterloo, ON

esy of: Cora

- Operable windows for natural ventilation
- Space conditioning through water-cooled VRF heat pumps
- Open-loop geo-exchange system
- Building-integrated solar collector for preheated fresh air

- 770 kWp PV parking canopy & rooftop PV •
- EV charging •
- EUI: 81 kWh/m²/year •
- **TEDI:** 24 kWh/m²/year •
- Peak Demand: 389 kW (winter)

Varennes Public Library, Varennes, QC

•

- R-30 walls, R-48 roof, WWR~30% with exterior solar shading •
- Operable windows for natural ventilation •
- Ground-source heat pumps with a total capacity of 40 tons ۲
- Primary space conditioning through a hydronic radiant slab •
- Solar heat recovery from the BIPV roof for preheated fresh air •

- 120 kWp BIPV/Thermal roof •
- EV charging •
- **EUI:** 70 kWh/m²/year
- TEDI: 20 kWh/m²/year •
- Peak Demand: 80 kW (summer)

Varennes Public Library, Varennes, QC

Questions?

email: costa.kapsis@uwaterloo.ca

Technology Collaboration Programme

Economics of Solar Neighborhoods and Evaluation Techniques

Kuljeet Grewal

This presentation is comprised of five parts. It begins with an introduction to solar strategies and technologies, identifying and comparing different types of solar panels. This is followed by a discussion of the concept of energy payback time (EPBT), then an examination of economic analysis methods. The presentation introduces HOMER Pro before demonstrating the software through an exercise.

Economics of solar neighborhoods and evaluation techniques

Kuljeet S. Grewal (Ph.D.), Assistant Professor, University of Prince Edward Island, Canada IEA Task 63, Fall School, Canada, Sep 13, 2022

Technology Collaboration Programme by lea

FUTURE URBAN ENERGY LAB FOR SUSTAINABILIT

Content

- Solar strategies and technologies
- Energy payback time (EPBT)
- Economic analysis methods
- Introduction to HOMER Pro
- Exercise

Solar Strategies

Passive: cheap, efficient design; block summer rays; allow winter Photovoltaic (PV): direct electricity; 15%-20% efficient; \$5 per Watt to install without rebates/incentives; small fraction ofroof covers demand of typ. home

Solar Thermal: $\sim 30\%$ efficient; cost-competitive; requires direct sun; heats fluid in pipes that then boils water to drive steam turbine

Solar hot water: up to 50% efficient; several \$k to install; usually keep conventional backup; freeze protection vital

Types of Solar Panels

2nd Generation

Pocket calculators

3rd Generation

Biohybrid Solar Cell

shc.org

Comparison of Panels

Solar Cell Type	Efficiency Rate	Advantages	Disadvantages	Rate (per Watt)	
Monocrystalline Solar Panels (Mono-SI)	~20%	High efficiency rate; optimized for commercial use; high life-time value	Expensive	\$1.00 - \$1.50	
Polycrystalline Solar Panels (p-Si)	~15%	Lower price; made by melting raw silicon	Sensitive to high temperatures; lower lifespan &s lightly less space efficiency	\$0.90 - \$1.00	
Thin-Film: Amorphous Silicon Solar Panels (A-SI)	~7-10%	Relatively low costs; easy to produce & flexible	Shorter warranties & lifespan	\$1.00 - \$1.50	
Cadmium Telluride Solar Cell (CdTe)	~16%(22%: First Solar)	Cd is abundant; Te is rare but limited use (recyclable); low cost	Cd is toxic	\$0.75 - \$1.25	
Concentrated PV Cell (CVP)	~41%	Very high performance & efficiency rate	Solar tracker & cooling system needed (to reach high efficiency rate)	\$0.80 - \$1.10	

5

165

shc.org

Solar Myths Debunked

Energy-Payback Time

1) Solar modules don't produce enough energy to offset their carbon footprint

Energy-payback time (EPBT) of a PV module is the amount of time a module must produce power to recover the energy it took to produce the module initially

Energy-Payback Time, $\text{EPBT} = \frac{E_{\text{mat}} + E_{\text{manuf}} + E_{\text{trans}} + E_{\text{inst}} + E_{\text{EOL}}}{E_{\text{agen}} - E_{\text{aoper}}}$

 E_{mat} = primary energy demand to produce materials of PV system E_{manuf} = energy demand to manufacture PV system E_{trans} = primary energy demand to transport materials used during the life cycle E_{inst} = primary energy demand to install the system E_{FOL} = primary energy demand for end-of-life management

 E_{agen} = annual electricity generation in primary energy term E_{aoper} = annual energy demand for operation and maintenance in primary energy term

EPBT and **Emissions**

BOS (balance of system): module supports, cabling, and power conditioning

Source: https://www.sciencedirect.com/topics/engineering/energy-payback-time

Levelized Cost of Energy (LCOE)

Adapted from European Wind Energy Association, "Economics of Wind Energy," http://www.ewea.org/fileadmin/ewea_documents/documents/00_POLICY_document/Econo

8

conomics_of_Wind_Energy_March_2009_.pdf

Pathway to 3 Cents per kWh

LCOE Projections

Source: U.S. Energy Information Administration, Annual Energy Outlook 2022

^a Levelized cost includes tax credits available for plants entering service during the projection period. ^b Technology is assumed to be photovoltaic with single-axis tracking. Costs are expressed in terms of net AC (alternating current) power available to the grid for the installed capacity.

10

U.S. average

combined cycle onshore wind solar photovoltaic^b

Each solid circle on represents an electricity market region as modeled.

Variability of Solar

Lack of solar energy availability at certain times cause two types of problem:

- Long term variability: Continuing need for power ulletat nights and on cloudy days

Prominent challenges when variable power exceeds more than 10 to 15% of the total power

For low renewable energy and high demand, the multiple approaches to solve the problem include:

- energy storage (essential for net-zero)
- demand response (i.e., bringing gas-fired generators online)
- reducing demand by turning off loads (smart grid)

Source: Barnes, F., and J. Levine. "Large energy storage systems." NY: Taylor & Francis Group (2011)

11

Short term variability: Need to smooth the rapid variations: i.e., small clouds pass overhead

Levelized Cost of Solar-Plus Storage (LCOSS)

Electricity fed from the grid to battery and back again

Economics Insight

2019 USD/MWh

13

NREL is Office o Operate This rep Laborato

LCOSS: levelized cost of solar-plus storage LCOE: levelized cost of energy ITC: investment tax credit

www.iea-shc.org

U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020

David Feldman, Vignesh Ramasamy, Ran Fu, Ashwin Ramdas, Jal Desai, and Robert Margolis

National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Technical Report NREL/TP-6A20-77324 January 2021

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Evaluation Techniques: HOMER Pro

HOMER Pro

FILE	LOAD COMPONENTS RESOURCES PROJECT HELP
Home Home CCUTATIC	Electric #1Image: DeferrableImage: DeferrableImage: DeferrableImage: DeferrableImage: DeferrableImage: DeferrableHydrogen
FILE	LOAD COMPONENTS RESOURCES PROJECT HELP
Home View	Image: Controller Generator Image: Converter Custom Image: Converter Custo
FILE	LOAD COMPONENTS RESOURCES PROJECT HELP
Home	Solar GHI Solar DNI Wind Temperature Fuels Hydrokinetic Hydro biomass Custom
FILE	LOAD COMPONENTS RESOURCES PROJECT HELP
Home Home	Economics Constraints Emissions Optimization Optimization Search Space Sensitivity Multi-Year Input Report Estimate Clear Results

Community Applications: HOMER Pro

Ex	port	Optimization Results Left Double Click on a particular system to see its detailed Simulation Results.																						
		Architecture Cost						System Gen					PV			1kWh Ll								
1	r 💼 e	III 🔀	PV (kW) ▼	Gen T	1kWh LI 🍸	Converter (kW)	Dispatch 🍸	(\$)	COE 🕕 🔨	7 ^{Operating cost} (\$/yr) €	Initial capital ∇	Ren Frac (%)	Total Fuel (L/yr)	Hours 🏹	Production (kWh)	Fuel V	O&M Cost (\$/yr) ▼	Fuel Cost (\$/yr)	Capital Cost (\$)	Production (kWh/yr)	Autonomy V	Annual Throughput (kWh/yr)	Nominal Capacity (kWh)	Usable Nomi (kW
4	ء 🛋	III 🔀	25.0	23.0	65	12.0	CC	\$330,326	\$0.473	\$17,377	\$129,100	44.7	10,186	1,803	33,384	10,186	1,240	11,887	75,000	41,187	7.55	22,125	65.0	52.0
	f	s 🗾		23.0	65	12.0	CC	\$444,995	\$0.637	\$33,755	\$54,100	0	21,516	4,513	67,711	21,516	3,125	25,187			7.55	19,004	65.0	52.0
<u>î</u> 4	r 💼		25.0	23.0			LF	\$470,359	\$0.673	\$33,148	\$86,500	15.8	19,805	7,052	50,810	19,805	4,852	23,141	75,000	41,187				
	<u></u>			23.0			LF	\$509,086	\$0.728	\$42,968	\$11,500	0	26,191	8,760	69,443	26,191	6,044	30,658						

Optimal System Configuration

	Calculation Report							
Simulation Details								
	Cost Summary							
		Base Case	Lowest Cost System					
	NPC 🕕	\$509,086	\$330,326					
	Initial Capital	\$11,500	\$129,100					
	0&M 🕕	\$42,968/yr	\$17,377/yr					
	LCOE 🕕	\$0.728/kWh	\$0.473/kWh					

Exercise

Update location and see changes

SCHEMATIC			DESIGN
AC DC Gen Flectric Load #1 165.40 kWh/d 20.45 kW peak Converter Conver	Name: Author: Description: This model dem system for even simulates the sy Enabling Multi-V battery storage inflation rate. The reason, I recommon First, we ran this optimal system system was \$0.4	Sample_CommunityMiniGridWithMultiYear John Glassmire nonstrates the Multi-Year capability of the HOMER model. A Multi-Year analysis simulates the ry timestep for every year of the project lifetime. Without the Multi-Year analysis, HOMER ystem for one-year and extrapolates the results to the other years to calculate the economics. Year allows the system to model capture year-to-year changes. In this model, that captures the level from year-to-year, PV performance degradation, and diesel cost escalation above the ne trade-off for this is that the model is more precise, but the calculation takes longer. For this mend that you model first without Multi-Year and then refine the design with it.	DESIGN 34 Passmore St, Char Arctic Ocea
	Modules require * Multi-Year	e model with slightly refined sizes and Multi-Year turned on to model the performance of this rears of project life.	N Pacific Oci

lottetown, PE C1A 2B7, Canada (46°14.3'N , 63°7.9'W)

Have questions or interested in working together for real-world impact!

Kuljeet S. Grewal, Ph.D. Assistant Professor, Faculty Sustainable Design Engineering (FSDE), University of Prince Edward Island kgrewal@upei.ca

@IEASHC

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

Economics of Neighborhood Solar Development

Eric Wilczynski

The presentation begins with an introduction to the concepts of neighborhood solar and a comparison of solar development. This is followed by a discussion about economics, by examining market potential, LCOE, and local economic benefits. The presentation continues with a discussion of different business models and financing mechanisms before concluding with a PVWatts demonstration.

Economics of neighborhood solar development

IEA Task 63 Fall School, Calgary (CA) September 13, 2022

Eric Wilczynski

Researcher at the Institute for Renewable Energy, Eurac Research (IT)

PhD Candidate at the University of Geneva (CH) & Utrecht University (NL)

Technology Collaboration Programme

Outline

- Introduction Ι.
 - Defining neighborhood solar Ι.
 - Solar development comparison **II**.
- **Economics basics ||**.
 - Market potential Ι.
 - LCOE П.
 - III. Local economic benefits
 - IV. Summary of economic benefits
- III. Business models
 - Typical business models Ι.
 - Financing mechanisms 11.
 - III. PVWatts demo

I. Defining neighborhood solar

Neighborhood solar is a solar development servicing a group of buildings or a district within a spatially defined, specific geographic area (IEA SHC Task 63)

I. Solar development comparison

	Provide Provide	<image/> <section-header></section-header>	
Typical capacity	<1 MW	1 to 5 MW	
DER potential	Yes	Yes	
Available technology	Low	Medium	
Ownership	Private ownership/lease	Shared/subscription based	Pri

4

Utility-scale system

>5 MW

No

High

ivate or utility ownership

shc.org

II. Economics basics

Content:

- Market potential
- LCOE
- Local economic benefits
- Summary of economic benefits

II. Market potential

Which consumers are unique to neighborhood/community solar?

II. Market potential

- Defining and identifying potential customers
 - Typical:
 - Homeowners/building owners
 - Neighborhood organisations
 - Unique:
 - Renters
 - Residents in MFHs
 - Occupants of buildings with inadequate roof for solar
 - Low/moderate income consumers

Numbers: Canada

>40% dwellings are multi-family buildings or mobile homes

>50% middle income (7% low income)

30% renters

Source: StatCan, OECD

II. LCOE

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances

Source: Lazard Ltd.

8

www.iea-shc.org

	1		
	\$221		
96			
\$204			
9204			
	\$225	\$250	\$275
			/

II. Local economic benefits

- Local labour market growth
- Increased tax revenue
- Positive land repurposing
- Sale of power generation

Community solar development in Beverly, MA on capped landfill

Image source: Beverly, MA official website

II. Summary of economic benefits

10

www.iea-shc.org

III. Business models

Content:

- Typical business models
- Financing mechanisms
- PVWatts demo

III. Typical business models

	Utility model	SPE model
Who sponsors and owns the project?	Utility (or 3 rd party)	Special purpose entity members
Who pays for the project?	Utility, grants, ratepayer subscriptions	Member investments, grants, incentives
Who builds the project?	3 rd party developer	3 rd party developer
Who hosts the project?	Utility (or 3 rd party)	3 rd party

12

Developer model

Developer

Developer investments, grants, incentives

Developer

3rd party

III. Financing mechanisms

- Typical schemes:
 - Bank financing (loans, bonds)
 - Equity-based financing
 - Power Purchase Agreement (PPA)
- Innovative/alternative schemes:
 - Crowdfunding
 - Peer to peer electricity trading (P2P)
 - Feed-in Premium (FiP)
 - Solar bonds
 - Development trust
 - Charity development

¢
Î
Ť

III. PVWatts demo: Subscription model

https://sam.nrel.gov/

Steps:

- Select location 1
- Define system design 2.
- Set grid limits (optional) 3.
- Set annual AC output degradation 4.
- Input overhead costs 5.
- Input operating costs 6.
- Define subscriber parameters 7.
- 8. Define financial parameters
- 9. Enter any incentives
- 10. Set depreciation
- 11. Run simulation and view results

Thank you

www.iea-shc.org

🥑 @IEASHC

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

The Role of Occupant Behaviour in Energy Efficient Buildings and Solar Neighborhoods Planning Mohamed Ouf

This presentation opens introduces first the effect of Occupant Behavior (OB) on energy consumption and efficiency, identifying the challenges of modelling OB and discussing how to account for OB in planning solar neighborhoods. The next section of the presentation is focused on how occupant behavior can be modelled and integrated in building performance simulations. The presentation concludes with a discussion about how to integrate occupant behaviour in building operations.

The role of occupant behaviour in energy efficient buildings and solar neighborhoods planning

Mohamed Ouf, Assistant Professor, Concordia University IEA SHC TASK 63 Fall school, September 6th-22nd, 2022

Technology Collaboration Programme

Introduction

- Evidence for the effect of Occupant Behavior (OB) on energy consumption; efficiency
- Challenges
 - Oversimplification of occupant assumptions when sizing / designing 1. various systems
 - 2. Effect on peak demand / demand response is not well understood

Introduction

• How to account for OB in Planning solar neighborhoods?

Operations

Occupant Behaviour (OB) in Design Consider this example

Office designed to maximize daylight harvesting

Occupants close blinds due to excessive glare (design flaws)

www.iea-shc.org

Occupants use electric lighting instead of daylight harvesting

How can we address OB during design?

- Building Performance Simulations
 - Integrating a more detailed representation of OB

		Level of Randomness		
		Deterministic Model	Stochastic Model	
Level of Complexity	Static Model	Static Deterministic model	Static stochastic model	
	Dynamic Model	Dynamic deterministic model	Dynamic stochastic model	

Data collection of occupant-related information

What are occupant-related information?

Data Collection

Common data sources

Building Automation Systems

www.iea-shc.org

Installing stand-alone sensors / monitors

Data Collection

Where are you?

cozie

Tailor your experiment via the Fitbit mobile app

and design your flow

Other data sources

Abstract: Evaluating and optimising human comfort within the built environment is challenging due to the large number of physiological, psychological and environmental variables that affect occupant comfort preference. Human perception could be helpful to capture these disparate phenomena and interpreting their impact; the challenge is collecting spatially and temporally diverse subjective feedback in a scalable way. This paper presents a methodology to collect intensive longitudinal subjective feedback of comfort-based preference using micro ecological momentary assessments on a

Humans-as-a-Sensor for Buildings—Intensive Longitudinal Indoor Comfort Models

Prageeth Jayathissa, Matias Quintana⁽⁰⁾, Mahmoud Abdelrahman⁽¹⁾ and Clayton Miller *⁽⁰⁾

Building and Urban Data Science (BUDS) Lab, National University of Singapore (NUS),

Singapore 117566, Singapore; p.jayathissa@gmail.com (P.J.); matias@u.nus.edu (M.Q.); mahmoud@u.nus.edu (M.A.) * Correspondence: clayton@nus.edu.sg; Tel.: +65-81602452

Received: 25 August 2020; Accepted: 27 September 2020; Published: 1 October 2020

Modelling Occupant Behaviour

Occupant Behaviour types

Each sub-category can be modelled using different approaches:

- Inter-quartile ranges
- Monte-Carlo methods
- Bernoulli random processes
- Discrete-time Markov Chains
- Discrete-event Markov Chains
- Survival Analysis
- Generalized Linear Regression
- Logistic Regression

modelling formalisms

and William O'Brien²

Occupant model forms – Bernoulli

Occupant model forms – Discrete-time Markov

Number of timesteps with a light switch on $p(switch \ on|off) =$ Number of occupied timestpe when lights were of f

Occupant model forms – Logistic Regression Models

$$P_{switch-on}(E_{in}) = \frac{\exp(a + b_{in}E_{in})}{1 + \exp(a + b_{in}E_{in})}$$
Expected duration of absence

$$P_{switch-off}(T_{abs}) = \frac{\exp\left(a + bT_{abs}\right)}{1 + \exp\left(a + bT_{abs}\right)}$$

Modelling Occupant Behaviour (OB)

• Estimating the likelihood of occupant-building interactions

Office Building in Edmonton, AB

Integrating OB in Building Performance Simulations

Integrating OB in Building Performance Simulations

Integrating OB in Building Performance Simulations

Outputs

- A range of building performance values
- Occupant-centric performance metrics
 - e.g., number of interactions with systems

Ouf, M.M., O'Brien, W. & Gunay, H.B. Improving occupant-related features in building performance simulation tools. Build. Simul. 11, 803–817 (2018).

Integrating OB in Building Performance Simulations Optimization

Integrating OB in Building Performance Simulations Optimization

Standard ASHRAE 90.1 schedules

Stochastic occupant models for occupancy, light use, and blinds use

217

25

Integrating OB in Building Performance Simulations Optimization

Identify optimal design variables using the Genetic Algorithm

Standard ASHRAE 90.1 schedules

Stochastic occupant models for occupancy, light use, and blinds use

Ouf, Mohamed, William O'Brien, Burak Gunay (2020) Optimization of electricity use in office buildings under occupant uncertainty. Journal of Building Performance Simulation, 13:1, 13-25

Modelling OB at the Urban-Scale

- Rely on big data collected across North America
 - Ecobee smart thermostat data (~14,000 houses in Canada)

219

Modelling OB at the Urban-Scale

- Ecobee data shows some level of agreement with statistically sampled data reported in SHEU ullet
- K-shape clustering of average 24-hr heating / cooling profiles
 - The highest Dunn index value was obtained with 4 clusters
- Approximately 60% of houses had a **daytime** heating and cooling **setback** •
- Data-driven heating / cooling setpoint profiles do not match Code assumptions •
- Code assumptions also do not change based on climate zone, house type or area

Modelling OB at the Urban-Scale Time Use Surveys

Integrating Occupant Behaviour in Building Operations

Integrating Occupant Behaviour in Building Operations **Occupant-Centric Control (OCC)**

Occupant-Centric Controls (OCC)

Optimize the operation of different systems

Occupant-Centric Controls (OCC)

Use Reinforcement Learning as a model free approach

States/actions	18	20	21	22	23	24	26
1 (T<19)	-1.5	-1.5	-1	-0.5	0	-0.5	-1.5
2 (T=19)	-1.5	-1.5	-1	-0.5	0	-0.5	-1.5
3 (T=20)	-1.5	-1.5	-1	-0.5	0	-0.5	-1.5
4 (T=21)	-1.5	-1	-0.5	0	-0.5	-1	-1.5
5 (T=22)	-1.5	-1	-0.5	0	-0.5	-1	-1.5
6 (T=23)	-1.5	-0.5	0	-0.5	-1	-1.5	-1.5
7 (T=24)	-1.5	-0.5	0	-0.5	-1	-1.5	-1.5
8 (T=25)	-1.5	-0.5	0	-0.5	-1	-1.5	-1.5
9 (T>=26)	-1.5	0	0	-0.5	-1	-1.5	-1.5
10 (occ=0)	-1.5	-1.5	-2.775	-1.5	-1.5	-1.85	0

A tabular Q-learning algorithm is used to learn a target policy $\pi(S_t)$ from the user's behavior (behavior policy $\mu(S_t)$)

Initially, actions are chosen based on the behavior policy $\mu(S_t)$

The Q values are updated towards the target policy $\pi(S_t)$ using:

 $Q(S_t,A_t \)=Q(S_t,A_t \)+ \alpha(R_(t+1)+\gamma Q(S_t,A_(t+1) \)-Q(S_t,A_t \))$

29

Occupant-Centric Controls (OCC)

A simulation-based framework to optimize occupant-centric controls

INTERNATIONAL ENERGY AGENCY

Outlook

- Goal of investigating occupant behaviour
 - More accurate prediction of energy use??
 - Influencing design choices
 - Improving building operation
- Fit for purpose modelling
 - Representing simulation results as a range
 - How does this influence solar neighbourhood planning? What level of detail in modelling OB is needed?
- Large-scale data collection
 - Data-driven approaches to investigate occupant-building interactions at multiple scales
- Potential benefits for demand-response programs, integration of renewables / solar generation, operating building clusters and optimizing their interactions with the grid

Thank You! mohamed.ouf@concordia.ca

www.iea-shc.org

🥑 @IEASHC

in IEA Solar Heating and Cooling Programme (group 4230381)

Technology Collaboration Programme

Designing and Building Effective Sustainable Neighorhoods: A Case Study of the EVE Park London Project Seungyeon Hong and Ashley Hammerbacher

The presentation begins with an introduction to the case studies: the West5 project and the EVE Park project. The West5 case study is focused on system design and the use of a microgrid, and optimization of buildings to achieve net-zero energy. The EVE Park case study combines interesting architectural designs to optimization of PV electricity production. The presentation concludes with a discussion about energy consumption reduction through the design of efficient buildings.

Designing and Building Effective Sustainable Neighborhoods: A Case Study of the EVE Park London Project

Seungyeon Hong (Sustainability Engineering, Energy and Civil) and **Ashley Hammerbacher** (EVE Park Project Lead) IEA SHC Task 63: Solar Neighborhood Planning | University of Calgary | September 15, 2022

Technology Collaboration Programme

Agenda

- Introduction to the West5 Project and EVE Park Project
- System Design West5 Microgrid
- Electricity Production Designing EVE Park Solar Array
- Consumption Reduction- *Designing efficient buildings*
- Q&A

West 5 – The Most Visionary Sustainable Lifestyle Destination

- First fully inclusive Net Zero Energy Community in North • America
 - 2,000 living units
 - Over 32,000 to 46,000 m² of commercial and office space
- Master plan designed by s2e for Sifton Properties, acting as the sustainable partner in the development. •
- Interconnected walkways, trails and open green spaces. A safe, walkable, pedestrian-centric design with a vision for 100% energy efficiency. ٠
- **Electricity Micro Grid** ٠
- Under continuous construction: •
 - First commercial building in operations since 2015. •
 - Second commercial building in operations since 2016.
 - First block of townhomes fully occupied since 2018/4Q.
 - under construction.

New central mixed-use residential and commercial buildings

EVE Park- NZE Community within West5

COMMUNITY

EVE Park is located in a budding new community in West London. The Riverbend neighborhood is developed around the principles of wellness, innovation and sustainability. Solar panels adorn the rooftops, running and biking clubs are abundant, and a network of foot paths weave throughout this naturalized neighborhood. A quick walk to nearby parks and amenities, while just a short drive from central London and the 401 — this area is one of the most sought after in London.

1 The Sifton Center

Backroads London West 5 Discovery Centre MedPoint Executive Fitness Dr. Vicky Martin, Psychologist West 5 Physiotherapy & Health Centre MedPoint Executive Services Sugarbush Spa Inc. Edward Jones Investments

West 5 Family Dentistry The Penthouse Salon & Cosmetic Clinic Sifton Properties Limited Corporate Office Sifton Decor Studio **Tesseyman Orthodontics** (Coming Soon!) Oxygen Yoga

Mixed Use Office & Retail

Hey, Cupcake! West Blooms Flowers

LBM Partner Services

Eolos (Coming Soon!)

Existing & Future Development

Oak West Animal Clinic	(3) Townhomes
Existing Residential	Existing Residential
Existing Residential	50 Future Grocery
Future Recreational Center	1 Future Office Space
Retirement Apartments	😟 Legacy Square

1-Intro

EVE PARK LONDON- Evolved Living

- 84 for-sale condominium homes
- Net Zero energy, 100% solar electric homes
- **Efficient Water Systems**
- Superior Indoor Air Quality
- Connection to West 5 Smart Grid for battery backup during power outage
- Automated Parking Tower Integration
- All-electric carshare fleet

West 5 Microgrid

Problem: Shortage of space for PV (Rooftops, canopies, and façade ~8.5 MW of PV for Community Solar)

Assessed alternates (like PV farm on brownfield) with a medium voltage link to downtown. However, the primary concern was the substantial distance between West5 and the possible locations

- Instead, chose to use a hybrid microgrid (combines advantages of AC • and DC which decreases investment costs and energy loss)
- DC opportunities included: decreased conversion losses, power quality • improvement, extra capacity (avoiding reactive power & cable skin effect), reduction of voltage level & potential for safety) and most excitedly, future proofing with modular design

www.iea-shc.org

Microgrid - Multiple topology options

The leading candidate: interfaced to the building mains, with DC-coupled interconnection between buildings

Lesson Learned: Each situation has a unique microgrid solution, depending on the cost/performance/reliability priorities

Advantages & Limitations										
Case 1	Case 2	Case 3	Case 4	Case 5	Case 6					
x	х	~	~	~	×					
x	х	~	~	✓	×					
x	х	~	~	х	×					
x	~	~	~	х	✓					
~	~	x	x	x	~					
'-limited	~	~	✓- limited	 -limited 	✓ -limited					
х	 Image: A second s	~	х	х	х					
x	~	~	х	х	×					
x	~	~	~	 -limited 	✓					
~	х	~	~	✓	✓					
~	х	х	~	✓	×					
~	x	~	~	✓	✓					
~	х	х	~	х	✓					
~	x	~	~	~	~					
~	~	x	x	~	~					
x	 Image: A set of the set of the	~	х	Х	X					
х	~		~	 -limited 	~					
~	~		~	~	~					

Microgrid Battery Location

2- Microgrid

Microgrid – Current Design

239 2- Microgrid

Microgrid – Charging

- High density electric vehicle (EV) charging
- Demand Response approx. 1 hr/ year
- Autonomous vehicle automatic charging system
- Investigate different charging technology (Wireless, DC fast chargers, etc.)
- Parking Tower Microgrid development (PV, Storage, Vehicle-to-Grid Charging)

Robotic Charger- In Development

EVE Park Solar – Original Design Concept

Concept Art – Original Design Intent

Challenges:

- Complex slope
- Expensive walkway (+ challenges with code compliance)

241

3-EVE Solar

EVE Park – Optimizing Solar Layout

East-West Design

Challenges:

- Roof anchors end up under solar panels or potentially damage solar panels in use
- Requires expensive roof anchoring system w/ no central walkway for maintenance
- Inefficient use of roof space

Benefits

12

3-EVE Solar

Walkway down the middle of the project

EVE Park – Solar Sizing

Kept design under 500 kW

- No transfer trip study required
- Lower tier of connection agreement (CCA) with Local Distribution Company • (HydroOne/London Hydro)

Capacity: DC 580kW / AC 480kW Yield: 1142 kWh/kWp/yr Total: 662.2 MWh/yr

HOW DID WE ACHIEVE NET ZERO ENERGY GIVEN SMALLER PRODUCTION?

EVE Park – Net Zero

PRODUCTION

CONSUMPTION

Normalized productions (per installed kWp)

662.2 MWh

662.0 MWh

4- Consumption

EVE Park – Consumption

245 **4-** Consumption

EVE Park – Building

Tight envelope (air, bulk water, condensation, capillary)

Triple glazing

Efficient HVAC

www.iea-shc.org

4- Consumption

(VRF heat pump + ERV)

EVE Park – Building

Efficient appliances

Water saving shower

shc.org

EVE Park – unimplemented

Electrochromic Glazing

Smart water heater controller

Demand Response

248-

Automated Demand Response

Average Day (Time)

Click picture for video link

Thank you!

www.iea-shc.org

🥑 @IEASHC

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

The Impact of Urban Morphology and Construction Standards on the Energy Consumption of Neighborhoods Ursula Eicker

The objective of the presentation is to study and identify the most important morphological and geometrical parameters that influence a building's energy consumption on a neighborhood scale. This discussion is followed by an evaluation of energy consumption in a neighborhood case study, and an analysis of the impact of certain parameters. The presentation concludes with a discussion of the role of morphology and construction standards on renewable energy generation potential.

The impact of urban morphology and construction standards on the energy consumption of neighborhoods

Ursula Eicker, Canada Excellence Research Chair in Smart, Sustainable and Resilient Cities Azin Sanei, MSc Building Engineering, Concordia University

Technology Collaboration Programme by lea

Introduction

https://urban.uw.edu/news/new-apps-help-builders-reduce-carbon-footprint

/https://canada.constructconnect.com/joc/news/economic/2020/03/infographic-canadas-urban-population-growth

https://urban.uw.edu/news/new-apps-help-builders-reduce-carbon-footprint/https://www.archdaily.com/371686/new-acadia-retrofitting-urban-decay-winning-proposal-garrett-rock https://www.houzz.com/for-pros/feature-estimating?&lsd=bing_estimates&lsmr=bing_software&m_refid=olm_bing_372026306_1305120532480009_kwd-81570232988441:loc-32__c_o_catgrow_o&pos=&device=c&nw=o&matchtype=b&m_kw=construction%20estimate&source=bing&utm_medium=cpc&utm_source=bing&utm_term=kwd-81570232988441:loc-0.org

32&msclkid=0fd6c56d8a5116a7b03fa7bd0e7e56db

254

2

Urban Design & energy consumption

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Introduction **Objectives**

- To study and identify the most important morphological and geometrical parameters that influence buildings' energy consumption on a neighborhood scale.
- To evaluate energy consumption in real case study neighborhoods and analyze the impact of selected spatial parameters. This step helps future energy-efficient urban development and design.
- To study the construction standard's effect on energy consumption on a neighborhood scale and compare it with the geometrical effect.
- To study the role of morphological parameters and construction standards on renewable energy generation potential.

Introduction + Literature Urban environmental measuring metrics + related parameters

Evaluate environmental performance metrics in City and Neighborhood scale

Environmental performance metrics

in city and neighborhood scale

Heating load

Cooling load

- Ventilation Potential
- Urban Heat Island (UHI)
- Lighting load
- **Building indoor temperature**
- Solar potential
- Life cycle
- **Sky view Factor**
- Wind airflow

Parameters

in urban or neighborhood scale

The performance metrics will be calculated for urban areas

Morphological Parameters

that define urban scale design

Construction parameters

- that apply to building elements:
 - Windows
 - Roofs
 - Walls
 - Floors

Introduction + Literature: Morphology

Morphological Parameters

that define urban scale design

Surface to volume ratio

(S/V), Compactness

- Orientation
- Ratio of perimeter to the area •
- Aspect ratio of the blocks or buildings • (length/width)
- Ratio of obstruction height to canyon • width (H/W)
- Floor Area Ratio .
- Cover Ratio (site coverage)
- Plot area ratio
- Typology
- Volume to Area ratio

Morphology parameter scenarios

Assumption

Construction standard parameters & building envelope assumption

Construction standard parameters

building's construction assumptions						
	R-value		U-value			
	Exterior walls m ² K/W	Exposed floor m ² K/W	Windows W/m ² K			
Weak	1.13	3.44	5.7			
Average	1.8605	3.44	4.68			
Good	3.58	5.55	2.68			
Very good	10.56	10.66	1.75			
Strong	16.12	16.019	1.07			
Very Strong	26.58	26.69	0.6			

building envelope assumption

- neighborhood
- considered the same for all the buildings.

The same construction, building programs, and schedules are considered for all the buildings in the

Window-to-wall ratio and window properties are

Methodology

260-

Methodology: Software workflow

URBAN GEOMETRY

Simulation & results: window location & radiation

10

262-

shc.org

Simulation & results: window location & radiation

www.iea-shc.org

Parameters: Orientation comparison of one side window and two side window

264

Parameters: Orientation comparison of one side window and two side window

Parameters: Compactness comparison of real dense scenarios to the sparse scenarios

266

14

Slide 13

Parameters: Compactness comparison of real dense scenarios to the sparse scenarios

Parameters: Simplification comparison of real (dense) scenarios to the simplified (dense) scenarios

268

16

Parameters: Construction standards

Heating loads (kWh/m²) in different scenarios & Construction standard

 Sc2-real	(dense)

- Sc2- Sparse
- Sc1- real (dense)
- Sc1- Sparse

Radiation calculations: Roofs

	T			
0 °	45°	90°	135°	
9436.2 MWh	9454.9 MWh	9471.8 MWh	9447.3 MWh	
	C			
180°	225°	270°	315°	
9429.9 MWh	9452.7 MWh	9478.5 MWh	9456.1 MWh	
Radiation received on roofs in different orientations, SC1-r				

270

www.iea-shc.org

Radiation calculations Roofs

Radiation on roofs SC2-real (dense) & SC2-Sparce (MWh/m2) 135 180 225 315 270 Orientation (degree) -real-sparse — real-dense TERNATIONAL ENERGY AGENC

271

Renewable energy calculations

Conclusion and discussion

- Orientation is only important when windows are only one-side of the buildings (Maximum difference in heating loads is 13% compared to 2% on both sided scenario)
- Higher surface-to-volume ratios (sparse scenario) increase the heating demand significantly by up to 50% when buildings are detached.
- If the buildings are highly insulated, the heating only increases by 20% when the buildings are detached. This means that high insulation standards reduce the impact of urban morphology changes.
- Simplifying the geometries does not have significant impacts.
- Construction standards can bring down energy consumption by 85%.
- In all cases cooling loads are significantly lower than heating loads (within the range of 8kWh/m2 to 14 kWh/m2 compared to heating loads 300 to 30kWh/m2).
- Even with the worst orientation, and less solar potential (Dense scenario), with good construction standards we can have a positive energy district if there is not much height difference in the neighborhood.

Thank you!

Any questions?

www.iea-shc.org

🥑 @IEASHC

in IEA Solar Heating and Cooling Programme (group 4230381)

Technology Collaboration Programme