Low Carbon, High Comfort Integrated Lighting

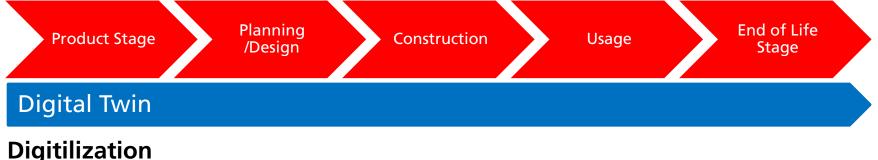
IEA SHC Task Definition Phase: Status Report

Jan de Boer, FHG-IBP, Stuttgart Germany Eleanor Lee, LBNL Berkeley Barbara Matusiak, NTNU, Norway David Geisler-Moroder, Bartenbach, Austria Niko Gentile, Lund University, Sweden Jan Wienold, EPFL Switzerland Victor Ferreira, IREC, Spain

and all contributing experts

November 29, 2022

IEA SHC Task / EBC Annex Proposal "Low carbon, high comfort integrated lighting"



Energy in Buildings and Communities Programme

Lighting in context of decarbonization and energy efficiency

- Electricity for lighting accounts for 5% of the global greenhouse gas emissions and 15% of the electrical energy consumption¹
- More and more directly taxed CO₂ emissions, rising electricity prices, higher competition for electricity
- Widening the rating perspective of lighting solutions to a more holistic view of its impact on CO₂ emissions deemed necessary

Carbon Footprint of "Lighting value chain"

IEA SHC Task / EBC Annex Proposal "Low carbon, high comfort integrated lighting"

Greenhouse gas emissions by service - 50.6Gt CO2e total

Agri-food

Commuting

Construction

Communications

Waste

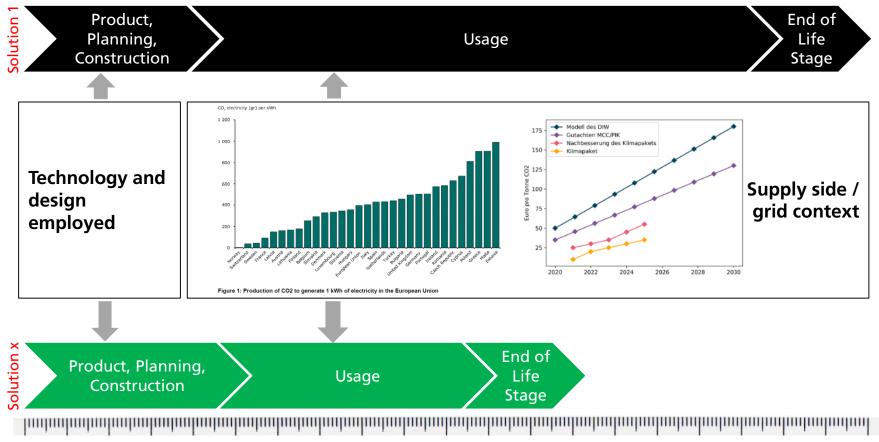
Washing

Freight

Textiles

Lighting

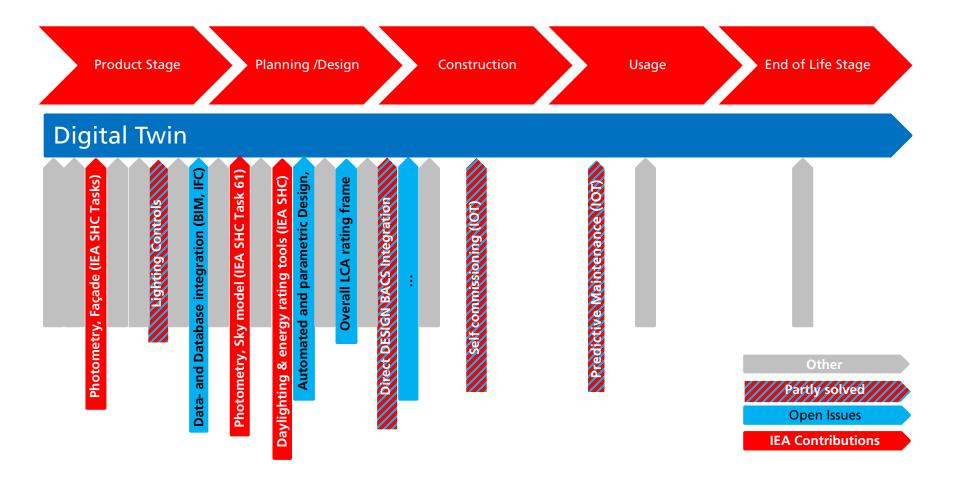
Personal travel


Industrial equipment

¹UNEP Report, Accelerating the Global Adoption of ENERGY-EFFICIENT LIGHTING, 2017 ² https://public.tableau.com/app/profile/rosamund.pearce/viz/Greenhousegasemissionsbyservice/Dashboard1

Lighting Carbon footprint

Scenarios, strategies, roadmaps...



CO₂ eq. Kg per solution

+ Link to other trades...

Empowering by digitalization

2 Definition Workshops, Stuttgart (4/2022), Lund (10/2022)

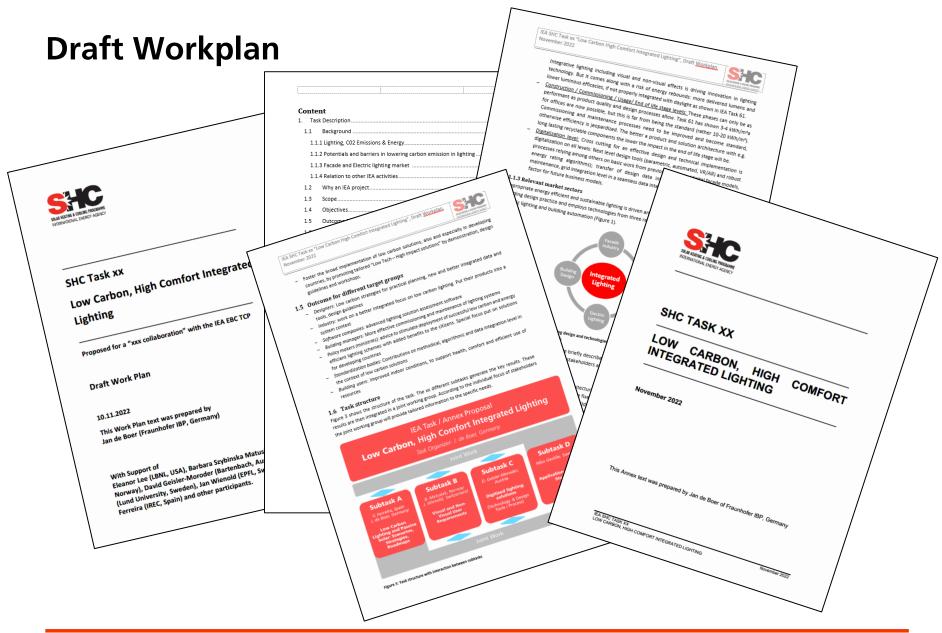
47 participants from 17 countries 15 onsite, others online

49 participants from 19 countries19 onsite, others online

Task Definition Coordination / Management

TDP coordination team

- Task organization: Jan de Boer, Fraunhofer Institute of Building Physics for PTJ, Germany
- Subtask development:
 - Barbara Matusiak, NTNU, Norway
 - Eleanor Lee, LBNL Berkeley
 - David Geisler-Moroder, Bartenbach, Austria
 - Niko Gentile, Lund University, Sweden
 - Jan Wienold, EPFL Switzerland
 - Victor Ferreira, IREC, Spain



Objective

The overall objective of the activity is to identify and support implementing the potentials of lighting (electric, façade: daylighting & passive solar) in the decarbonisation on a global perspective, while aligning the new integrative understanding of humans' light needs with digitized lighting on a building and a building related urban scale.

Proposed Structure

Proposed Structure

IEA Task / Annex Proposal Low Carbon, High Comfort Integrated Lighting

Task Organizer: J. de Boer, Germany

Subtask A:

Low Carbon Lighting and Passive Solar: **Scenarios, Strategies, Roadmaps**

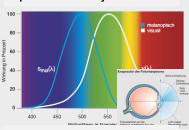
Coordination: Victor Ferreira, IREC, Spain with support of Jan de Boer, FHI-IBP, Germany

- **Objective:** Based on existing first work on LCA for electric lighting (e.g. LEDs, luminaires) extend perspective to integrated lighting solutions including daylighting, facade systems, and controls. Set up of relevant scenarios (components, systems, local energy mixes, grid constraints, usage etc.). Evaluate with a tailored framework bringing together LCA / energy tools. From this parametric study develop "low carbon solution" strategies by intelligently combining new technical components and design concepts: Identify low hanging fruits, Illustrate the impact of no/bad/good design. Address business models in this context.
- A.1. Status quo: Overview on data, methods, regulations
- A.2. Catalogues of Scenarios
- A.3. Framework for flexibly rating different scenarios
- A.4. Design Guide, Strategies and Roadmaps

Production

Raw Material Extraction

Assembly of


IEA SHC Task / EBC Annex Proposal "Low carbon, high comfort integrated lighting"

Subtask B: Visual and non-visual User Requirements

Coordination: Barbara Matusiak, NTNU, Norway and Jan Wienold, EPFL, Switzerland

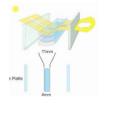
- **Objective:** Daylighting and lighting design is moving from a "photometric" or "visual" to a "spectral" definition of lighting quality including "non-visual" effects. Focus on understanding how lighting and daylighting schemes can address both often contrasting visual and non-visual requirements in an effective, resource efficient way, taking the built environment but also the surrounding in the big picture by means like intervention studies.
- B.1. Improved understanding of visual discomfort for humans
- B.2. View preferences/descriptors for rooms with different visual stimuli and activities
- B.3. Relation between the view out of the window and urban morphology
- B.4. New developments for non-visual aspects
- B.5. Measurements and assessment methods of non-visual aspects

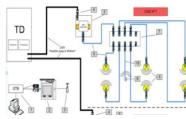
Spectral Sensitivity Curves

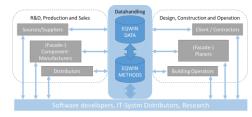
INTERNATIONAL ENERGY AGENC

Subtask C: Digitized lighting solutions (Technology & Design Tools / Process)

Coordination: David Geisler-Moroder, Bartenbach, Austria with support of Eleanor Lee, LBNL, U.S.A


Objective: Evaluate and contribute to the digitization of lighting which is taking place at the **technology** and the **design process** level in its impact on a low carbon footprint


Technology: Review the state-of-the-art practice for digital component integration via the internet of things (IOT), as well as benefits for commissioning and maintenance of lighting installations


- C.1. System concepts for digitalized lighting solutions and combined daylight and solar utilization
- C.2. IOT and control systems

Design Tools / Process: Focus on the integration of lighting in the overall BIM workflow analyzing the current status. Design software will be evaluated regarding seamless data and workflows (connecting to BMS, "Human Lighting Interface", etc.), parametric and automated design options to better understand carbon impacts given temporal availability of clean energy, certification and code compliance calculations, and advanced communication options.

- C.3. BIM continuous workflow for integrated lighting solutions and underlying data
- C.4. Simulation methods for integrative lighting design and VR possibilities

Subtask D:

Application and Case Studies

Coordination: Niko Gentile, Lund University, Sweden

- **Objective:** Collect experiences from applications and case studies, with a focus on the environmental impact of their whole life cycle. And communicate opportunities and challenges to stakeholders wishing to build or retrofit daylighting and lighting in the least environmentally impactful way, while keeping the lighting quality high.
- D.1. Catalogue of case studies
- D.2. Evaluation procedure
- D.3. Data collection and analysis
- D.4. Lessons learned
- D.5. Impact of densification on visual comfort, well-being, and rescources used
- D.6. Promotion of highly efficient lighting solutions for Sunbelt Regions, GN-SEC

EACREEE SACREEE

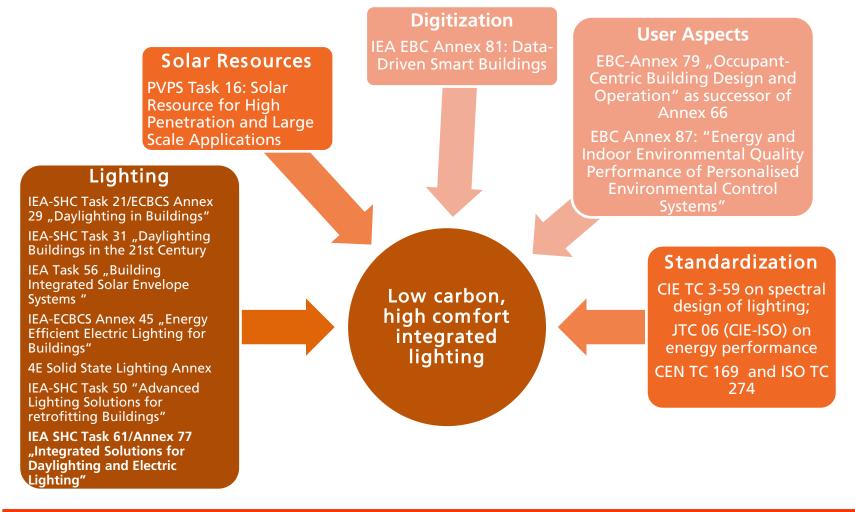
RCRFFF

ECREEE SICREEE

CCREEE

Milestones

								2023				T			2	2024							202						20	026	
				J		Α	М	1 1		s o	N	L D	FI		MJ	J	A S	0	N D	JF	м	A N	1 1	1	A S	0	N D	1	F M	A I	M
	P	roject M	anagement		M				L	м								<u> </u>													Ż
																													-		ΞŶ
	Subtask A:Low	A.1.	Status quo: Overview on data, methods, regulations									A1-1			1	A1-2															
	Carbon Lighting: Scenarios,	A.2.	Catalogues of Scenarios									A2-1						A2-2													
	Strategies, Roadmaps	A.3.	Framework for flexibly rating different scenarios													A3-1 V					AB-	2					Ę	8-3 V	-	\square	1
		A.4.	Design Guide, Strategies and Roadmaps																								4	V4-1	LA C	4-2	
																													ᆍ		B
		B.1.	Improved understanding of visual discomfort for humans													V	[V					81	7				V V			
	Subtask B: Visual and Non-Visual	B.2.	View preferences/descriptors for rooms with different visual stimuli and activities					E2-1								₩2-2 ▼				E2-3	82-							V V			
	User Requirements	B.3.	Relation between the view out of the window and urban morphology																B3									3-3 V			
		B.4.	New developments for non-visual aspects													^{₿4-1}			B4	2				3			9	¥-4 7			
IEA SHC Task		8.5.	Measurements and assessment methods of non-visual aspects												[⁶⁵⁻¹			BS	2								V V			
Definition Phase																															÷
"Integrated Solutions for Daylighting and Electric Lighting"	Subtask C:	C.1.	Technology: System concepts for digitalized lighting solutions and combined daylight and solar utilization											C 1					E	2											
	Digitalized lighting solutions	C.2.	Technology: IOT and control systems																	1							6	7		\square	
	(Technology & Design tools / process)		Design Tools / Process: BIM - continuous workflow for integrated lighting solutions and underlying data																C						٦	7					
		C.4.	Design Tools / Process: Simulation methods for integrative lighting design and VR possibilities												1	C4-1 V			G	2			6	3					ę	Y	
		D.1.	Catalogue of case studies							D1-1																	6	4-2 V	+	H	+
		D.2.	Evaluation procedure								02	V V]														0	2-3	+	$ \uparrow $	\top
	Subtask D: Applications and	D.3.	Data collection and analysis		1										1	D3-1 V											G	8-2 V	+	$ \uparrow $	\top
	Case Studies	D.4.	Lessons learned]		V	2												D4-8		D4-4
		D.5.	Impact of densification on visual comfort and well-being										D5-1]													9	×5-2		Π	
		D.6.	Promotion of highly efficient lighting solutions for Sunbelt Regions												[D6-1 V			D6-2 V				De	3					\top	\square	


Joint Work

Main aspects of work integration between the 4 subtasks

Overview on subtask joint activities and possible overlaps, 8.11.2022 B.2 ew deve lopments for non-visual aspects B.3 Relation between the view out of the window and urban morphology then developments for non-visual B.4 Mexatements and assessment methods of non-visual aspects nvisual digitalized ā on data, nting New developments for visual spects utilization A.4 Design Guide, Strategies and coadmapsy cient 0.3 Data collection and analysis 2.4 BIM - continuous workflow ntegrated lighting solution Catalogue of case studies A.3 Framework for flexibly i lifterent scenarios Promotion of highly effi olutions for sunbelt regions Catalogues of Scenarios .5 Impact of densification onfort A.1 Matus quo: Overview -nethods, regulations C.1. System concepts for d lighting so htions .2 Evaluation Procedure C.2. Day light and solar u façade and roof A Lessons learned 3 IO T 5 A.1 Status quo: Overview on data, methods, regulations A.2 Catalogues of Scenarios A.3 Framework for flexibly rating different scenarios A.4 Design Guide, Strategies and Roadmaps B.1 Improved understanding of visual discomfort for humans B.2 View preferences/descriptors for rooms with different visual stimuli and activities B.3 Relation between the view out of the window and urban morphology B.4 New developments for non-visual aspects B.5 Measurements and assessment methods of non-visual aspects C.1 System concepts for digitalized lighting solutions and combined daylight and solar utilization C.2 IOT and control systems C.3 BIM - continuous workflow for integrated lighting solutions and underlying data C.4 Simulation methods for integrative lighting design and VR possibilities D.1 Catalogue of case studies D.2 Evaluation Procedure D.3 Data collection and analysis D.4 Lessons learned D.5 Impact of densification on visual comfort D.6 Promotion of highly efficient solutions for sunbelt regions Joint activities, please specify, in which Subtask the results will be documented Interaction between activities, please specify who is expecting what Possibly overlapping activities, please make proposal to resolve

Relation to ongoing or previous SHC Tasks, EBC Annexes and other Programs

Expressed Interest: Research

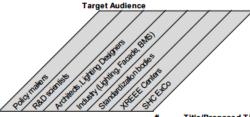
Country	Organisation	Interest in Subtask						
		А	В	С	D			
Australia	Queensland University of Technology		x		Х			
Austria	Bartenbach	х	(X)	х				
	HELLA	х		х				
Belgium	Université catholique de Louvain		x	х	X			
Brazil	Universidade de Brasília		x	(X)	X			
Canada	University of Toronto			х				
China	Beijing University of Technology	х	x		<u> </u>			
	China Academy of Building Research	х	x		x			
	Soochow University	t.b.d.			<u> </u>			
Denmark	DTU Civil Engineering		(X)	x	x			
Germany	Fraunhofer-Institut für Bauphysik	x		x	(X)			
,								
	Fraunhofer-Institut für Solare			Х				
	Energiesysteme Priedemann Fassadenberatung GmbH			x	x			
Italy	Construction Technology Institute		x	~	(X)			
ICALY	(ITC-CNR)				(^)			
	Sapienza Università di Roma		(X)		Х			
	University of Campania		х	х	(X)			
	University of Naples Federico II		x	х				
Japan	Kyushu University		(X)	х				
Norway	NTNU		x	1				
Poland	Gdansk University of Technology		x	(X)	X			
Spain	IREC – Eundació Institut de Recerca en Energia de Catalunya	х	(X)	(X)	(X)			
Sweden	Lund University		x		х			
Switzerland	Empa - Swiss Federal Laboratories for Materials Science and Technology	х		x	(X)			
	EPFL		х		X			
	Idiap Research Institute			х	(X)			
	Lucerne University of Applied	(X)	х	х				
	Sciences and Arts							
Türkiye	University of Instanbul	X	X		X			
United Kingdom	University of Cambridge		Х		х			
U.S.A.	Lawrence Berkeley National			х	(X)			
	Laboratory Oregon State University		x	-	-			

Since Workplan submittal: Netherlands, TU-Delft

🖉 Fraunhofer IBP UCL Lund Université catholique de Louvain UNIVERSITY **KYUSHU** UNIVERSITY Technical Universidade de Brasília University of Denmark UNIVERSITY OF CAMBRIDGE Fraunhofer BERKELEY LAB GDAŃSK UNIVERSITY ISE OF TECHNOLOGY Lucerne University of Applied Sciences and Arts HOCHSCHULE LUZERN ÉCOLE POLYTECHNIQUE DANISH BUILDING RESEARCH INSTITUTE FÉDÉRALE DE LAUSANNE AALBORG UNIVERSITY COPENHAGEN UNIVERSITY OF TORONTO CILE ng Energy for a Sustainable Future Università degli Studi della Campania Luigi Vanvitelli **T**UDelft INTNU **Queensland University** QUT Empa of Technology

Expressed Interest: Industry

Country	Company	Short name /Abbreviation
Austria	Hella, Sunshading	HEL
	Bartenbach	BL
Denmark	Velux	VEL
China	t.b.d. Luo Tao is contacting companies	
Germany	Different trade associations (electric lighting and façade)	ТА
	Interpane	IP
	Priedemann Façade Lab	PFL
Norway	Norconsult	NoC



Task # Information Plan

Task Duration:

							#	Title/Proposed Title	Format	Task Month
Subtask A							A1	Survey on data sources, methods and regulations	Internal document (not public)	1
							A2	Catalogue of scenarios	Internal document (not public)	2
	x		х	х			A3	Simple tool to rate LCA / GWP	SHC website	3
			х				A4	Design guideline	SHC website	3
	x			х			A5	Roadmap	SHC website	3
	x		x	x			A6	Report "Low Carbon Lighting: Scenarios, Strategies and Roadmaps"	SHC website	4
Subtask B							B1	Documentation B.1-B.5 as working documents	Internal documents (not public)	3
		x	x	x	x		B2	Information material on "New developments for non-visual aspects" as report or short video	SHC website	3
		Х	х	Х	X		B3	Report "Visual and Non-Visual User Requirements"	SHC website	4
Subtask C							C1	Documentation C.1-C.4 as working documents	Internal documents (not public)	3
		Х	X	X			C2	Refactored Radiance core tools	Software via SHC Website	3
							C3	White paper on current state-of-the-art of lighting	White Paper (Public)	3
								simulation software tools for visual and non-visual		
		X	X	X				performance evaluation.		
							C4	Report "Digitalized Lighting Solutions for low carbon build	SHC website	4
	X	X	X	X				environments – Status quo and outlook"		
Subtask D							D1	Documentations D.1-D.5 as working documents	Internal document (not public)	3
								Information material about D.5 "Impact of densification on	SHC website	3
	x	X	X		X		D2	visual comfort and well-being" as report or short video		-
		~	x	x			D3	Report "Low carbon daylighting and lighting solutions: practical applications"	SHC website	4
		^	^	^			03			
TCP/Other	х	х	x	X	X			Task webpage	SHC website	
	X	X	X	X	X			Task brochure (optional)	SHC website and Print	
	X	X	X	X	X	x		TCP Annual Report contribution (1 per year)		annual
	x	x	x	x	x			Task Highlight report (1 per year)		annual
	x		x	x				Position Paper (ExCo needs to approve request to omit)		4
	x	х	x	x				Solar Update articles (minimum during and end)		24/4
						X		Task Status report (2 per year)		twice per yea
						X		Final Management report		4
						X		Mid-term Task evaluation	1	2
						X		Final Task evaluation		4
	×	х	х	х				Solar Academy webinar	Workshop	3

"Low Tech, High Impact" Lighting solution for sunbelt

Industry Workshops each face to face task meeting

Special journal issue for scientific papers

Workshop

Workshop

Wiley or Elsevier or other

30 42

twice per year

*A Task report is an official document of the Task that is approved by the Task Publication Committee. They do not include conference papers and presentations.

х

х

X X X

x


X X

IEA SHC Task / EBC Annex Proposal "Low carbon, high comfort integrated lighting"

regions

Addendum to IEA SHC Task 61 / EBC Annex 77

Technology Position Paper

Integrated Day- and Electric Lighting in Non-residential Buildings

November 2022

Challenge	Action needed
Harvest 'low hanging fruit' in electric lighting	 Replace old lighting installations with LED technology. Request luminaire efficiencies >150 Im/W. Refocus from decisions based on pure investment costs to total cost of ownership.
Strengthen the role of daylighting	 Recognize daylight – which nowadays can be sufficiently quantified as a substitute for electric lighting – a "renewable energy source" – allowing for inclusion in subsidy programs as known from other market sectors (PV, wind, etc.). Use sustainability certificates to promote daylighting, if not included, or revisit existing certificates and update. Demand a minimal window to floor area ratio, e.g., in central Europe between 1/8 and 1/10. Revise ordinances to demand technical and economical advantageous daylighting solutions, such as: Daylight-supportive combinations of glazing and sun shading/glare protection devices Light redirecting fenestration, and Daylight and occupancy sensitive electric lighting comfort driven when occupied, solar gain driven when unoccupied).
Widen the rating perspective of lighting	 Put lighting into the perspective of its impact on decarbonization. Foster LCA approaches for rating integrated lighting.
Rethink products	 Make product architectures⁵ more sustainable. Push product design based on micro-optics for LED luminaires and façades applications. Support development and implementation of disruptive façade technologies like switchable glazing systems, ideally in combination with vacuum glazing, to drastically lower a façade's embodied energy.
Improve Design Processes	 Make planning of lighting installations mandatory. Foster employment of new available integrated design and rating tools, which in part automatically indicates not yet allocated potentials. Introduce processes ensuring certain daylight quality levels (e.g., parametric, automated design tools. Use design strategies that prompt energy efficient behaviors. Support the deployment of concepts from new daylighting and electric lighting standard (e.g., EN

⁵ Product architecture is the organization (or chunking) of a product's functional elements.

Page 8

Organisational Matters / Issues for the EXCO

- Planned duration 3,5 years: 1/2023-6/2026
- Participation of your experts greatly appreciated
- Kick-off planned: 17th-19th of April 2023, Aversa, Italy

- Collaboration with EBC:
 - Istanbul EXCO meeting: Committment for collaboration, Level still open
 - Interested to join via EBC: Brasil, Italy, Japan, Sweden, USA.
 - Liason officer ("Annex Adviser")

